

Probability in Computing

Reminder

• HW 12 is due Thursday

LECTURE 25

Last time

- Exponential distribution
- Poisson process
- Poisson random variables

Today

- Finish Poisson process
- Use of probability in algorithms

4/25/2023

Tiago Januario, Sofya Raskhodnikova; Probability in Computing; based on slides by Alina

Definition: A Poisson process is a sequence of arrivals over time, where:

1) The mean arrival rate

$$\lambda = \frac{\text{Mean Number of Arrivals}}{\text{Unit Time}}$$

is constant over all time, for any unit interval [t..t+1)

- 2) The number of arrivals in two non-overlapping intervals is independent; and
- 3) The probability of two arrivals occurring at the same time is 0.

CS Review: Poisson Random Variables

- Consider a Poisson Process
- Fix the unit time interval (e.g., 1 second or 1 year)
- Supposed the mean number of arrivals in a unit interval is λ
- Let *X* be the number of arrivals in a unit interval. (It has the same distribution for each unit interval.)
- Then we call *X* a Poisson Random Variable with rate parameter λ Notation: $X \sim \text{Poisson}(\lambda)$

Tiago Januario, Sofya Raskhodnikova; Probability in Computing

Top Hat question (Join Code: 033357)

- Assume that large meteorites hit the earth following the Poisson process, on average, twice per century.
- Is it more likely that we will have 0 or 1 large meteorite hit the earth in the next 50 years? Solution:
- A. 0 is more likely
- **B**. 1 is more likely
- C. Equally likely
- D. None of the above

```
Reminder:

If X \sim Poisson(\lambda),

f_X(k) = \frac{\lambda^k e^{-\lambda}}{k!}
```

- Rate of arrivals per interval of length 50 years is ; so $\lambda =$
- $X \sim Poisson()$
- $\Pr(X = 0) =$
- $\Pr(X = 1) =$

CS 237 Interarrival Times of Poisson Process

• Let *Y* be the time until the first arrival.

- The arrivals are independent, so at any time *t*, probabilistically the Poisson process starts all over again (the events don't remember the past!) :
- Y = "the time between any two consecutive arrivals"

What is the distribution of Y?

CS 237 Interarrival Times of Poisson Process

• Let *Y* be the time until the first arrival.

Pr(Y > t) = Pr(``no arrivals in the interval [0, t]'')

Reminder: If $X \sim Poisson(\mu)$, $f_X(k) = \frac{\mu^k e^{-\mu}}{k!}$

$$k =$$

Rate of arrivals per interval of length *t* is

4/25/2023

- The number of arrivals in a unit interval: $X \sim Poisson(\lambda)$
- The time between arrivals: $Y \sim Exponential(\lambda)$

You don't look normal

1000!

CS Probability in Algorithms

Probability is used in the design and analysis of algorithms

- 1. to analyze deterministic algorithms when inputs come from a specified distribution
- 2. to design and analyze algorithms that use randomness

CS 237 An Application: Sorting

How to organize your bookshelf?

• We will show how to do it really quickly when your input comes from a uniform distribution

Input: n numbers a_1, a_2, \ldots, a_n

Output: the same numbers in the sorted order: $b_1 \leq b_2 \leq \cdots \leq b_n$

Example: *Input:* 8 2 4 9 3 6 *Output:* 2 3 4 6 8 9

8 2 4 9 3 6

8 2 4 9 3 6

9 3

We use:

- 1 step to insert the second element
- 2 steps to insert the third element

• n - 1 steps to insert the n^{th} element steps

- We can sort much faster when the range of numbers is small
- Example: Sorting solutions to one HW problem by score (1 to 10)
- Input: *n* integers from range {1, ..., *r*}
 - 1. Put items with the same value into the same bucket.
 - 2. Keep a linked list for each bucket.
 - 3. Make a pass over the input and put each element in the correct bucket
 - 4. Concatenate the lists.

• If $r \le n$, we can sort in O(n) time

• Given: n integers from range $\{1, \dots, r\}$.

• What if r > n? (Suppose for simplicity that n divides r.)

Theorem

If *n* integers are chosen uniformly and independently from range $\{1, ..., r\}$, they can be sorted in expected time O(n).

• Expectation is over randomness in the choice of integers: Bucket Sort is deterministic (that is, it does not use randomness).

• Idea: Break the range into *n* buckets.

The expected # of elements in each bucket is 1.

We can easily sort all buckets (using Insertion Sort)

Algorithm. Input: integers a_1, \ldots, a_n

- 1. Make linked lists for buckets B_1, \ldots, B_n .
- 2. For each *i* from 1 to *n*

let
$$j = \left[\frac{a_i \cdot n}{r}\right]$$
 and add a_i to B_j .

- 3. Sort all buckets using Insertion Sort.
- 4. Output the concatenation of B_1, \ldots, B_n
- Steps 1,2, and 4 can be implemented to run in O(n) time.

Step 3 runs in expected time O(n).

 B_1

 B_2

 B_{2}

Lemma

Step 3 (sorting the buckets) runs in expected time O(n).

Proof: Buckets are bins, elements are balls in Balls-in-the-Bins.

- Let RV $X_j = #$ of elements that land in bucket B_j , for j = 1, ..., n
- Time to sort B_j is: $\leq c \cdot X_j^2$ for some constant c
- Expected run time of Step 3: by linearity of expectation by symmetry $\leq \mathbb{E}\left(\sum_{j\in\{1,\dots,n\}} cX_j^2\right) = c \cdot \sum_{j\in\{1,\dots,n\}} \mathbb{E}\left(X_j^2\right) = cn \cdot \mathbb{E}\left(X_1^2\right)$

Lemma

Step 3 (sorting the buckets) runs in expected time O(n).

Proof: Buckets are bins, elements are balls in Balls-in-the-Bins.

- Let RV $X_j = #$ of elements that land in bucket B_j , for j = 1, ..., n
- Expected run time of Step 3: $\leq cn \cdot \mathbb{E}(X_1^2)$
- X₁ ~

• Given: n integers from range $\{1, ..., r\}$.

Theorem

If *n* integers are chosen uniformly and independently from range $\{1, ..., r\}$, they can be sorted in expected time O(n).

CS Probability in Algorithms

Probability is used in the design and analysis of algorithms

- 1. to analyze deterministic algorithms when inputs come from a specified distribution
- 2. to design and analyze algorithms that use randomness