
4/27/2023

Probability in Computing

LECTURE 26
Last time

• Poisson process Poisson process

• Use of probability in algorithms

(sorting uniform input in linear time)

Today

• Use of probability in data structures

(hashing and Bloom filters)

• Sublinear-time algorithms

Tiago Januario, Sofya Raskhodnikova; Probability in Computing

Reminder

• HW 12 is due today

Static dictionary problem

Motivating example

Password checker to prevent people from using common passwords.

• S is the set of common passwords

• Universe: set 𝑈

• 𝑆 ⊆ 𝑈 and 𝑚 = |𝑆|

• 𝑚 ≪ |𝑈|

Goal: A data structure for storing 𝑺 that supports the search query

“Does 𝑤 ∈ 𝑺 ?” for all words 𝑤 ∈ 𝑼.

4/27/2023 Tiago Januario, Sofya Raskhodnikova; Probability in Computing

123456

password

11111111

iloveyou

qwerty

𝑈

𝑆

Solutions

Deterministic solutions

• Store 𝑺 as a sorted array (or as a binary search tree)

Search time: O(log 𝑚), Space: O(𝑚)

• Store an array that for each 𝑤 ∈ 𝑼 has 1 if 𝑤 ∈ 𝑺 and 0 otherwise.

Search time: O(1), Space: O(|𝑼|)

A randomized solution

• Hashing

4/27/2023 Tiago Januario, Sofya Raskhodnikova; Probability in Computing

Hashing with Chaining

• Hash table: 𝒏 bins, words that fall in the

same bin are chained into a linked list.

• Hash function: ℎ : U → {1,… , 𝑛}

To construct the table

hash all elements of 𝑆

To search for word 𝒘

check if 𝑤 is in bin ℎ(𝑤)

⋮

⋮

1

2

𝒏

Elements of 𝑺

4/27/2023 Tiago Januario, Sofya Raskhodnikova; Probability in Computing

A random hash function

• Simplifying assumption: hash function ℎ is selected at random:

Pr ℎ 𝑤 = 𝑗 =
1

𝑛
for all 𝑤 ∈ 𝑈 and 𝑗 ∈ {1,… , 𝑛}

• Once ℎ is chosen, every evaluation of ℎ yields the same answer.

Search time:

• If 𝑤 ∉ 𝑆, expected number of words in bin ℎ(𝑤) is

• If 𝑤 ∈ 𝑆, expected number of words in bin ℎ(𝑤) is

If we set 𝑛 = 𝑚, then

• the expected search time is O(1)

• max time to search is max load: w.p. close to 1, it is Θ
ln 𝑚

ln ln 𝑚

Faster than a search tree, with space still Θ(𝑚).
4/27/2023 Tiago Januario, Sofya Raskhodnikova; Probability in Computing

Approximate solution

for static dictionary problem

• False positives: If 𝑤 ∈ 𝑺, our data structure must answer

correctly. If 𝑤 ∉ 𝑺, we may err with small probability.

• E.g., we prevent all unsuitable passwords and some suitable ones, too.

• Bloom filters

– give trade off between space and false positive probability

– have parameters 𝑘, 𝑛

4/27/2023 Tiago Januario, Sofya Raskhodnikova; Probability in Computing

Bloom filter with 𝒏 bits and 𝒌 hash functions

• Bloom filter: array of 𝑛 bits 𝐴 1 ,… , 𝐴[𝑛]
– Initially: all bits are 0

– 𝑘 independent random hash functions ℎ1, … , ℎ𝑘 with range {1, … , 𝑛}

• To represent set 𝑆
– For each 𝑥 ∈ 𝑆 and 𝑖 ∈ {1, … , 𝑘}, set bits 𝐴[ℎ𝑖 𝑥] to 1.

• To decide if 𝑤 ∈ 𝑆:
– If for all 𝑖 ∈ {1, … , 𝑘}, bits 𝐴 ℎ𝑖 𝑤 = 1, accept, o.w. reject.

4/27/2023 Tiago Januario, Sofya Raskhodnikova; Probability in Computing

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 … 𝑛

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 … 𝑛

𝒙𝟏

𝟏 𝟏 𝟏

𝒙𝟐

𝟏 𝟏 𝟏

Analysis of False Positive rate

• For any 𝑛, we can set 𝑘 ≈
𝑛

𝑚
ln 2 .

• Consider 𝑤 ∈ 𝑈 − 𝑆.

• Let 𝐵𝑖 = 𝐴[ℎ𝑖 𝑤] for all 𝑖 ∈ {1,… , 𝑘}

• After 𝑚 elements hashed into Bloom filter, Pr[𝐵𝑖 = 0] =

4/27/2023 Tiago Januario, Sofya Raskhodnikova; Probability in Computing

A Sublinear-Time Algorithm

B L A - B L A - B L A - B L A - B L A - B L A - B L A - B L A

approximate answer

randomized algorithm

? L? B ? L ? A

Quality of

approximation

Resources
• number of queries

• running time

4/27/2023 Tiago Januario, Sofya Raskhodnikova; Probability in Computing

Randomized algorithms; property testers

Property Tester

Close to YES

Far from

YES

YES

Reject with
probability 2/3

Don’t care

Accept with
probability ≥ 𝟐/𝟑

Randomized Algorithm

YES Accept with
probability ≥ 𝟐/𝟑

Reject with
probability 2/3

NO

far = differs in many places𝜀- (≥ 𝜀 fraction of places)

𝜀

4/27/2023 Tiago Januario, Sofya Raskhodnikova; Probability in Computing

Example: Testing if a List is Sorted
Input: a list of 𝑛 numbers 𝑥1 , 𝑥2 , … , 𝑥𝑛
• A list of numbers is sorted if 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛.

• Question: Is the list sorted?

Requires reading entire list: (𝑛) time

• Approximate version: Is the list sorted or 𝜀-far from sorted?

(An 𝜀 fraction of 𝑥𝑖 ’s have to be changed to make it sorted.)

O
log 𝑛

𝜀
time

1
2

4/27/2023 Tiago Januario, Sofya Raskhodnikova; Probability in Computing

Sortedness Testing: Attempts

1. Test: Pick a uniformly random 𝑖 ∈ {1, … , 𝑛 − 1} and reject if 𝑥𝑖 > 𝑥𝑖+1.

Fails on: ← 1/2-far from sorted

2. Test: Pick uniformly random 𝑖 < 𝑗 in {1, … , 𝑛} and reject if 𝑥𝑖 > 𝑥𝑗.

Fails on: ← 1/2-far from sorted

1 1 1 1 0 0 0 0

1 0 2 1 3 2 4 3 5 4

𝒙𝒊

1
2

𝒊

1
2
3
4
5
6

1 2 3 4 5 6 7 8 9 10

4/27/2023 Tiago Januario, Sofya Raskhodnikova; Probability in Computing

Is a list Sorted or 𝜀-far from Sorted?

Idea: Associate positions in the list with vertices of the directed line.

Construct a graph (2-spanner)

• by adding a few “shortcut” edges (𝑖, 𝑗) for 𝑖 < 𝑗

• where each pair of vertices is connected by a path of length at most 2

……

≤ 𝑛 log 𝑛 edges

1 2 3 … 𝒏-1 𝒏

4/27/2023 Tiago Januario, Sofya Raskhodnikova; Probability in Computing

Is a list Sorted or 𝜀-far from Sorted?

1 2 5 4 3 6 7
Analysis:

• Call an edge (𝑖, 𝑗) violated if 𝑥𝑖 > 𝑥𝑗, and satisfied otherwise.

• If 𝑖 is an endpoint of a violated edge, call 𝑥𝑖 bad. Otherwise, call it good.

Proof: Consider any two good numbers, 𝑥𝑖 and 𝑥𝑗.

They are connected by a path of (at most) two satisfied edges 𝑖, 𝑘 , (𝑘, 𝑗)

⇒ 𝑥𝑖 ≤ 𝑥𝑘 and𝑥𝑘 ≤ 𝑥𝑗

⇒ 𝑥𝑖 ≤ 𝑥𝑗

1
2

1
2

5 4 3
xi xj

xk

Claim 1. All good numbers are sorted.

Test

Pick a random edge (𝑖, 𝑗) from the 2-spanner and reject if 𝑥𝑖 > 𝑥𝑗 .

4/27/2023 Tiago Januario, Sofya Raskhodnikova; Probability in Computing

Is a list Sorted or 𝜀-far from Sorted?

1 2 5 4 3 6 7
Analysis:

• Call an edge (𝑖, 𝑗) violated if 𝑥𝑖 > 𝑥𝑗, and satisfied otherwise.

• If 𝑖 is an endpoint of a violated edge, call 𝑥𝑖 bad. Otherwise, call it good.

1
2

1
2

5 4 3
xi xj

xk

Claim 1. All good numbers are sorted.

Proof: If a list is 𝜀-far from sorted, it has ≥ 𝜀𝑛 bad numbers. (Claim 1)

• Each violated edge contributes 2 bad numbers.

2-spanner has ≥
𝜀𝑛

2
violated edges out of 𝑛 log𝑛.

Test

Pick a random edge (𝑖, 𝑗) from the 2-spanner and reject if 𝑥𝑖 > 𝑥𝑗 .

Claim 2. An 𝜀-far list violates ≥ 𝜀/(2 log 𝑛) fraction of edges in 2-spanner.

4/27/2023 Tiago Januario, Sofya Raskhodnikova; Probability in Computing

Is a list Sorted or 𝜀-far from Sorted?

1 2 5 4 3 6 7
Analysis:

• Call an edge (𝑖, 𝑗) violated if 𝑥𝑖 > 𝑥𝑗, and satisfied otherwise.

Guarantee: All sorted lists are accepted.

All lists that are 𝜀-far from sorted are rejected with probability ≥ 2/3.

1
2

1
2

5 4 3
xi xj

xk

Test

Pick a random edge (𝑖, 𝑗) from the 2-spanner and reject if 𝑥𝑖 > 𝑥𝑗 .

Claim 2. An 𝜀-far list violates ≥ 𝜀/(2 log 𝑛) fraction of edges in 2-spanner.

Algorithm

Sample
4 log 𝑛

𝜀 edges (𝑖, 𝑗) from the 2-spanner and reject if 𝑥𝑖 > 𝑥𝑗 .

4/27/2023 Tiago Januario, Sofya Raskhodnikova; Probability in Computing

Testing if a List is Sorted: Summary

We can determine if a list of 𝑛 numbers is

sorted or 𝜀-far from sorted

in O
log 𝑛

𝜀
time.

1
2

4/27/2023 Tiago Januario, Sofya Raskhodnikova; Probability in Computing

Sublinear Algorithms: Summary

• Many problems admit sublinear-time algorithms

• Algorithms are often simple

• Analysis requires creation of interesting combinatorial,

geometric and algebraic tools

4/27/2023 Tiago Januario, Sofya Raskhodnikova; Probability in Computing

	Slide 1: Probability in Computing
	Slide 2: Static dictionary problem
	Slide 3: Solutions
	Slide 4: Hashing with Chaining
	Slide 5: A random hash function
	Slide 6: Approximate solution
	Slide 7: Bloom filter with bold italic n bits and bold italic k hash functions
	Slide 8: Analysis of False Positive rate
	Slide 9: A Sublinear-Time Algorithm
	Slide 10:
	Slide 11: Example: Testing if a List is Sorted
	Slide 12: Sortedness Testing: Attempts
	Slide 13: Is a list Sorted or script epsilon-far from Sorted?
	Slide 14: Is a list Sorted or script epsilon-far from Sorted?
	Slide 15: Is a list Sorted or script epsilon-far from Sorted?
	Slide 16: Is a list Sorted or script epsilon-far from Sorted?
	Slide 17: Testing if a List is Sorted: Summary
	Slide 18: Sublinear Algorithms: Summary

