

Probability in Computing

Reminder

• HW 12 is due today

LECTURE 26

Last time

- Poisson process Poisson process
- Use of probability in algorithms (sorting uniform input in linear time)

Today

- Use of probability in data structures (hashing and Bloom filters)
- Sublinear-time algorithms

Motivating example

Password checker to prevent people from using common passwords.

- S is the set of common passwords
- Universe: set U
- $S \subseteq U$ and m = |S|
- $m \ll |U|$

Goal: A data structure for storing *S* that supports the search query "*Does* $w \in S$?" for all words $w \in U$.

Deterministic solutions

• Store *S* as a sorted array (or as a binary search tree) Search time: $O(\log m)$, Space: O(m)

• Store an array that for each $w \in U$ has 1 if $w \in S$ and 0 otherwise. Search time: O(1), Space: O(|U|)

A randomized solution

• Hashing

- Hash table: *n* bins, words that fall in the same bin are chained into a linked list.
- **Hash function:** $h: U \rightarrow \{1, ..., n\}$

To construct the table

hash all elements of S

To search for word w

check if w is in bin h(w)

- Simplifying assumption: hash function *h* is selected at random: $Pr[h(w) = j] = \frac{1}{n}$ for all $w \in U$ and $j \in \{1, ..., n\}$
- Once *h* is chosen, every evaluation of *h* yields the same answer.

Search time:

- If $w \notin S$, expected number of words in bin h(w) is
- If $w \in S$, expected number of words in bin h(w) is

If we set n = m, then

- the expected search time is O(1)
- max time to search is max load: w.p. close to 1, it is $\Theta\left(\frac{\ln m}{\ln \ln m}\right)$

Faster than a search tree, with space still $\Theta(m)$.

4/27/2023

CS Approximate solution

for static dictionary problem

- False positives: If *w* ∈ *S*, our data structure must answer correctly. If *w* ∉ *S*, we may err with small probability.
- E.g., we prevent all unsuitable passwords and some suitable ones, too.
- Bloom filters
 - give trade off between space and false positive probability
 - have parameters k, n

Bloom filter with *n* bits and *k* hash functions

• Bloom filter: array of *n* bits *A*[1], ..., *A*[*n*]

- Initially: all bits are 0

- k independent random hash functions h_1, \dots, h_k with range $\{1, \dots, n\}$

- To represent set *S*
 - For each $x \in S$ and $i \in \{1, ..., k\}$, set bits $A[h_i(x)]$ to 1.

- To decide if $w \in S$:
 - If for all $i \in \{1, ..., k\}$, bits $A[h_i(w)] = 1$, accept, o.w. reject.

CS 237 Analysis of False Positive rate

- For any *n*, we can set $k \approx \frac{n}{m} \ln 2$.
- Consider $w \in U S$.
- Let $B_i = A[h_i(w)]$ for all $i \in \{1, ..., k\}$
- After *m* elements hashed into Bloom filter, $Pr[B_i = 0] =$

4/27/2023

CS 237 Randomized algorithms; property testers

 ε -far = differs in many places ($\geq \varepsilon$ fraction of places)

CS Example: Testing if a List is Sorted

Input: a list of *n* numbers $x_1, x_2, ..., x_n$

- A list of numbers is sorted if $x_1 \le x_2 \le \dots \le x_n$.
- Question: Is the list sorted? Requires reading entire list: $\Omega(n)$ time
- Approximate version: Is the list sorted or ε-far from sorted? (An ε fraction of x_i 's have to be changed to make it sorted.)

$$O\left(\frac{\log n}{\varepsilon}\right)$$
 time

CS 237 Sortedness Testing: Attempts

1. Test: Pick a uniformly random $i \in \{1, ..., n-1\}$ and reject if $x_i > x_{i+1}$.Fails on: $1 \mid 1 \mid 1 \mid 0 \mid 0 \mid 0 \mid 0$ $\leftarrow 1/2$ -far from sorted

2. Test: Pick uniformly random i < j in $\{1, ..., n\}$ and reject if $x_i > x_j$.

Idea: Associate positions in the list with vertices of the directed line.

Construct a graph (2-spanner)

 $\leq n \log n$ edges

- by adding a few "shortcut" edges (i, j) for i < j
- where each pair of vertices is connected by a path of length at most 2

Is a list Sorted or ε -far from Sorted?

Test

Pick a random edge (i, j) from the 2-spanner and **reject** if $x_i > x_j$.

Analysis:

- Call an edge (i, j) violated if $x_i > x_j$, and satisfied otherwise.
- If *i* is an endpoint of a violated edge, call x_i bad. Otherwise, call it good.

Claim 1. All good numbers are sorted.

Proof: Consider any two good numbers, x_i and x_j .

They are connected by a path of (at most) two satisfied edges (i, k), (k, j)

 $\Rightarrow x_i \leq x_k \text{ and } x_k \leq x_j$

$$\Rightarrow x_i \leq x_j$$

Is a list Sorted or ε -far from Sorted?

Test

Pick a random edge (i, j) from the 2-spanner and **reject** if $x_i > x_j$.

Analysis:

- Call an edge (i, j) violated if $x_i > x_j$, and satisfied otherwise.
- If *i* is an endpoint of a violated edge, call x_i bad. Otherwise, call it good.

Claim 1. All good numbers are sorted.

Claim 2. An ε -far list violates $\geq \varepsilon/(2 \log n)$ fraction of edges in 2-spanner.

Proof: If a list is ε -far from sorted, it has $\geq \varepsilon n$ bad numbers. (Claim 1)

- Each violated edge contributes 2 bad numbers.
- 2-spanner has $\geq \frac{\varepsilon n}{2}$ violated edges out of $n \log n$.

Is a list Sorted or ε -far from Sorted?

Test

Pick a random edge (i, j) from the 2-spanner and **reject** if $x_i > x_j$.

Analysis:

• Call an edge (i, j) violated if $x_i > x_j$, and satisfied otherwise.

Claim 2. An ε -far list violates $\geq \varepsilon/(2 \log n)$ fraction of edges in 2-spanner.

Algorithm Sample $\frac{4 \log n}{\mathcal{E}}$ edges (i, j) from the 2-spanner and **reject** if $x_i > x_j$.

Guarantee: All sorted lists are accepted.

All lists that are ε -far from sorted are rejected with probability $\geq 2/3$.

We can determine if a list of *n* numbers is sorted or ε -far from sorted in $O\left(\frac{\log n}{\varepsilon}\right)$ time.

- Many problems admit sublinear-time algorithms
- Algorithms are often simple
- Analysis requires creation of interesting combinatorial, geometric and algebraic tools