
CS 332: Elements of Theory of Computation Professor Sofya Raskhodnikova
Boston University October 25, 2019

Homework 7 – Due Friday, November 1, 2019 before noon

This homework contains 4 mandatory and 1 optional problem, worth 10 points each unless specified
otherwise.

Reminder Collaboration is permitted, but you must write the solutions by yourself without assis-
tance, and be ready to explain them orally to the instructor if asked. You must also identify your
collaborators. Getting solutions from outside sources such as the Web or students not enrolled in the
class is strictly forbidden.

Exercises Please practice on exercises and solved problems in Chapter 4 as well as on the exercises
below. Do not hand them in. The material they cover may appear on exams.

1. Please practice on exercises and solved problems in Chapter 5.

2. (True/False and Justify) Decide whether each statement is true or false and briefly justify
your answer.

T F There exists an enumerator TM that prints a set S of TM descriptions, such that S includes
descriptions of TMs that decide infinitely many different languages.

T F There exists an enumerator TM that prints a set S of TM descriptions, such that S includes
a description of at least one TM for each language over alphabet {0, 1}.

T F There exists an enumerator TM that prints the set S of TM descriptions that consists of
descriptions of all TMs whose language is empty.

T F If A is a decidable language and B is a Turing-recognizable language, then A \B must be
Turing-recognizable.

T F A two-dimensional Turing machine is like an ordinary Turing machine except that its tape
storage consists of a two-dimensional tape, corresponding to the upper right quadrant of
the plane. Each tape cell is a unit square. In one step, the single tape head can move
left, right, up or down. A two-dimensional TM starts with its input written on consecutive
cells, starting from the lowest leftmost cell (where the head is located) and going right. The
class of languages recognized by two-dimensional Turing machines is exactly the Turing-
recognizable languages.

Problems

1. (Undecidable languages) For each of the parts, formulate the given problem as a language and
prove it is undecidable.

(a) (2019TM) You are given a TM and you would like to determine whether there exists some
input w on which this TM moves its head to the left from the tape cell 2019. (We number the
tape cells from left to right, starting from 1.) Note that w is not given to you.
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(b) (Sorting TM) A TM correctly sorts if, given a comma-separated list of binary numbers, it
halts with the sorted (from smallest to largest) version of the list on its tape. (It does not
matter what it does on other inputs.) Consider the problem of determining whether a TM
correctly sorts. Formulate this problem as a language and prove it is undecidable.

2. (OVERLAPDFA,TM)
Let OVERLAPDFA,TM = {〈D,M〉 | D is a DFA and M is a TM and L(D) ∩ L(M) 6= ∅}.

(a) Prove that OVERLAPDFA,TM is undecidable.

(b) Prove that OVERLAPDFA,TM is Turing-recognizable.

(c) Is OVERLAPDFA,TM Turing-recognizable? Prove or disprove.

3. (OVERLAPCFG, 5 points)
Let OVERLAPCFG = {〈G1, G2〉 | G1 and G2 are CFGs and L(G1) ∩ L(G2) 6= ∅}. Show that
OVERLAPCFG is undecidable by giving a reduction from the Post Correspondence Problem (see
Section 5.2 of Sipser).

Hint: Given an instance

P =

{[
t1
b1

]
,

[
t2
b2

]
, . . . ,

[
tk
bk

]}
of the Post Correspondence Problem, construct CFGs G1 and G2 with the rules

G1 : T → t1Tσ1 | · · · | tkTσk | t1σ1 | · · · | tkσk
G2 : B → b1Bσ1 | · · · | bkBσk | b1σ1 | · · · | bkσk

where σ1, ..., σk are new alphabet symbols. Prove that this reduction works.

4. (Prime-length TM) Let PLTM = {〈M〉| M is a TM that accepts all strings whose length is a
prime number and rejects all other strings}. Prove the following statements about PLTM.

(a) PLTM is not Turing-recognizable.

(b) PLTM is not Turing-recognizable (i.e., PLTM is not co-Turing-recognizable.)

5∗ (Optional, no collaboration is allowed) In this problem, you are asked to think about LOSS
operations on languages. Each LOSS operation is specified by a set Σ of symbols. When the
“LOSS of Σ” operation, denoted by LOSSΣ, is applied to a string w, all characters in Σ disappear
from w. For example, LOSS{1,3}(121023) = 202 and LOSS{1,3}(241222) = 24222, whereas
LOSS{1,3}(24222) = 24222. To apply LOSSΣ to a language, we apply it to every string in the
language. For example, LOSS{0,1,3}(0

∗1∗2∗3) = 2∗. More formally,

LOSSΣ(L) = {LOSSΣ(w) | w ∈ L}.

(a) Prove that the class of regular languages is closed under the LOSS operations.

(b) Prove that the class of decidable languages is not closed under the LOSS operations.
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