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Course information

1. Course staff

2. Course website(s)

3. Piazza bonus

4. Prerequisites

5. Textbook(s)

6. Syllabus

7. Homework logistics

8. Collaboration policy

9. Exams and grading
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Tips for the course

• Concepts in this course take some time to sink in: 

be careful not to fall behind.

• Do the assigned reading on each topic before the 

corresponding lecture.

• Take advantage of office hours.

• Be active in lectures/recitations and on piazza.

• Allocate lots of time for the course: comparable 

to a project course, but spread more evenly.
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Tips for the course: HW

• Start working on HW early.

• Spread your HW time over multiple days.

• You can work in groups (up to 4 people), but 

spend 1-2 hours thinking about it on your own 

before your group meeting.
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Tips: learning problem solving

To learn problem solving, you have to do it: 

• Try to think how you would solve any presented 

problem before you read/hear the answer.

• Do exercises in addition to HW.
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Tips: how to read a math text

• Not like reading a mystery novel.

• The goal is not to get the answers, but to learn 

the techniques.

• Always try to foresee what is coming next.

• Always think how you would approach a 

problem before reading the solution.

• This applies to things that are not explicitly 

labeled as problems.
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Skills we will work on

• Mathematical reasoning

• Expressing your ideas 

– abstractly (suppress inessential details)

– precisely (rigorously)

• Mathematical modeling

• Algorithmic thinking

• Problem solving

• Having FUN with all of the above!!!
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Could they ask me questions

about CS 332 material on job interviews?

 You bet.
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What is Theory of Computation?

• You’ve learned about computers and 

programming

• Much of this knowledge is specific to particular 

computing environment
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What is Theory of Computation?

• Theory
– General ideas that apply to many systems

– Expressed simply, abstractly, precisely

• Abstraction suppresses inessential details

• Precision enables rigorous analysis

– Correctness proofs for algorithms and system designs

– Formal analysis of complexity

• Proof that there is no algorithm to solve some problem in 

some setting (with certain cost)
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This course

• Theory basics
– Models for machines

– Models for the problems machines can be used to solve

– Theorems about what kinds of machines can solve what kinds 

of problems, and at what cost

– Theory needed for sequential single-processor computing

• Not covered:

– Parallel machines

– Distributed systems

– Quantum computation

– Sublinear computation

– Real-time systems

– Mobile computing

– Embedded systems

– …
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Machine models

• Finite Automata (FAs): machines with fixed amount 

of unstructured memory

– useful for modeling chips, communication protocols, 

adventure games, some control systems, … 

• Pushdown Automata (PDAs): FAs with unbounded 

structured memory in the form of a pushdown stack

– useful for modeling parsing, compilers, some calculations 

• Turing Machines (TMs): FAs with unbounded tape 

– Model for general sequential computation (real computer).

– Equivalent to RAMs, various programming languages models

– Suggest general notion of computability
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Machine models

• Resource-bounded TMs (time and space bounded): 

– “not that different” on different models: “within a polynomial 

factor”

• Probabilistic TMs: extension of TMs that allows 

random choices

Most of these models have nondeterministic variants:

can make nondeterministic “guesses”
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Problems solved by machines

1. What is a problem?

2. What does it mean for a machine to “solve” 

a problem?

In this course, problem is a language. 

A language is a set of strings  over some “alphabet”
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Examples of languages

• L1= {binary representations of natural numbers divisible by 2}

• L2= {binary representations of primes}

• L3= {sequences of decimal numbers, separated by commas, that 

can be divided into 2 groups with the same sum}

– (5,3,1,3)  L3, (15,7,5,9,1) L3.

• L4= {C programs that loop forever on some input}

• L5= {representations  of graphs containing a Hamiltonian cycle}

– {(1,2,3,4,5); (1,2),(1,3),(2,3),…}

1

2

3

45

alphabet = {0,1}

alphabet = {0,1,…,9,comma}

visits each node exactly once

vertices edges

alphabet = all symbols: digits, commas, parens
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Theorems about classes of languages

We will define classes of languages and prove 

theorems about them:

• inclusion:  Every language recognizable (i.e., solvable) 

by a FA is also recognizable by a TM.

• non-inclusion:  Not every language recognizable by a 

TM is also recognizable by a FA.

• completeness:  “Hardest” language in a class

• robustness:  alternative characterizations of classes

– e.g., FA-recognizable languages by regular expressions 

(UNIX)
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Why study theory of computation?

• a language for talking about program behavior

• feasibility (what can and cannot be done)

– halting problem, NP-completeness

• analyzing correctness and resource usage

• computationally hard problems are essential for 

cryptography 

• computation is fundamental to understanding the world

– cells, brains, social networks, physical systems all can be  

viewed as computational devices

• IT IS FUN!!!
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Is it useful for developers?

Boss, I can’t find an efficient algorithm, because no such 

algorithm is possible.
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Boss, I can’t find an efficient algorithm. I guess I ‘m just too dumb.



Parts of the course
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I. Automata Theory

II. Computability Theory

III.Complexity Theory
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Finite automata (FA)
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0111     -- accepted

01110   -- rejected
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Each string is either accepted or rejected by the automaton 

depending on whether it is in an accept state at the end.
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Anatomy of finite automaton
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0
0,1

00

1

1

1
states

states

q0

q1

q2

q3

start state (q0)

accept states 

(F)
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Formal Definition
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Q is the set of states

Σ is the alphabet

 : Q  Σ → Q  is the transition function

q0  Q is the start state

F  Q is the set of accept states

A finite automaton is a 5-tuple M = (Q, Σ, , q0, F) 

L(M) = the language of machine M

= set of all (finite) strings machine M accepts

M recognizes the language L(M)
L1.24



Examples of FAs
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0,1q0

L(M) = {w | w is a string of 0s and 1s}

q0

L(M) = {ε} where ε denotes the empty string

0,1q1
0,1
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Examples of FAs
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q0 q1

0 0

1

1

L(M) = {w | w has an even number of 1s}
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1 0

1

q q00q0 q001

0 0 1

0,1

Build an automaton that accepts all (and only those) 

strings that contain 001
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Examples of FAs
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Formal definition of FA
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Q = {q0, q1, q2, q3}

Σ = {0,1}

 : Q  Σ → Q transition function*
q0  Q is start state

F  = {q1, q2}  Q accept states

M = (Q, Σ, , q0, F)  where

M q2

0
0,1

00

1

1

1

q0

q1

q3

 0 1

q0 q0 q1

q1 q2 q2

q2 q3 q2

q3 q0 q2

*



Language of FA
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L(M) = the language of machine M

= set of all strings machine M accepts

M recognizes the language L(M)


