9/2/2019

Theory of Computation

| ECTURE 1

Theory of Computation
« Course information

* Overview of the area
 Finite Automata

Sofya Raskhodnikova

Sofya Raskhodnikova; Intro Theory of Computation

5@% Course Information

Course staff
Course website(s)
Plazza bonus
Prerequisites
Textbook(s)

Syllabus
Homework logistics
Collaboration policy
Exams and grading

OOk
© 0N

212019 Sofya Raskhodnikova; Intro Theory of Computation L1.2

3%% Tips for the course

« Concepts In this course take some time to sink in:
be careful not to fall behind.

Do the assigned reading on each topic before the
corresponding lecture.

 Take advantage of office hours.
 Be active In lectures/recitations and on piazza.

 Allocate lots of time for the course: comparable
to a project course, but spread more evenly.

9/2/2019 L1.3

g% Tips for the course: HW

o Start working on HW early.
 Spread your HW time over multiple days.

 You can work in groups (up to 4 people), but
spend 1-2 hours thinking about it on your own
before your group meeting.

9/2/2019 L1.4

g‘; Tips: learning problem solving

To learn problem solving, you have to do it:

 Try to think how you would solve any presented
problem before you read/hear the answer.

Do exercises In addition to HW.

9/2/2019 L1.5

3%52 Tips: how to read a math text

* Not like reading a mystery novel.

» The goal Is not to get the answers, but to learn
the techniques.

 Always try to foresee what Is coming next.

 Always think how you would approach a
problem before reading the solution.

 This applies to things that are not explicitly
labeled as problems.

9/2/2019 L1.6

g‘% Skills we will work on

» Mathematical reasoning

« EXxpressing your ideas
— abstractly (suppress inessential details)
— precisely (rigorously)

« Mathematical modeling

* Algorithmic thinking

* Problem solving

» Having FUN with all of the above!!!

9/2/2019 L1.7

3% Could they ask me questions

about CS 332 material on job interviews?
= You bet.

9/2/2019 L1.8

3%% What is Theory of Computation?

* You’ve learned about computers and
programming

» Much of this knowledge is specific to particular
computing environment

9/2/2019 L1.10

3%% What is Theory of Computation?

* Theory
— General ideas that apply to many systems
— Expressed simply, abstractly, precisely

 Abstraction suppresses inessential details

* Precision enables rigorous analysis
— Correctness proofs for algorithms and system designs

— Formal analysis of complexity

 Proof that there is no algorithm to solve some problem in
some setting (with certain cost)

9/2/2019 L1.11

f;% This course

* Theory basics
— Models for machines
— Models for the problems machines can be used to solve

— Theorems about what kinds of machines can solve what kinds
of problems, and at what cost

— Theory needed for sequential single-processor computing
* Not covered:

— Parallel machines — Real-time systems
— Distributed systems — Mobile computing
— Quantum computation — Embedded systems

— Sublinear computation - ...
9/2/2019 110

239 | Machine models
» Finite Automata (FAs): machines with fixed amount

of unstructured memory

— useful for modeling chips, communication protocols,
adventure games, some control systems, ...

» Pushdown Automata (PDASs): FAs with unbounded
structured memory in the form of a pushdown stack
— useful for modeling parsing, compilers, some calculations

* Turing Machines (TMs): FAs with unbounded tape
— Model for general sequential computation (real computer).
— Equivalent to RAMSs, various programming languages models
— Suggest general notion of computability

9/2/2019 L1.13

3%% Machine models

» Resource-bounded TMs (time and space bounded):

— “not that different” on different models: “within a polynomial
factor”

e Probabilistic TMs: extension of TMs that allows
random choices

Most of these models have nondeterministic variants:

can make nondeterministic “guesses”

9/2/2019 L1.14

3%52 Problems solved by machines

1. What is a problem?

In this course, problem is a language.
A language Is a set of strings over some “alphabet”

2. What does it mean for a machine to “solve”
a problem?

9/2/2019 L1.15

fﬁ Examples of languages

 L,= {binary representations of natural numbers divisible by 2}

L,= {binary representations of primes} alphabet = {0,1}
L .= {sequences of decimal numbers, separated by commas, that

can be divided into 2 groups with the same sum}

— (5,3,1,3) € L, (15,7,59,1)¢ L. alphabet = {0,1,...,9,comma}
L,= {C programs that loop forever on some input}

L .= {representations of graphs containing a Hamiltonian cycle}
visits each node exactly once 2

- {(1,2,3,4,5); (1,2),(1,3),(2,3),...}

vertices edges 3

alphabet = all symbols: digits, commas, parens 5 4

9/2/2019 L1.16

GO

332 Theorems about classes of languages

We will define classes of languages and prove
theorems about them:

* inclusion: Every language recognizable (i.e., solvable)
by a FA is also recognizable by a TM.

« non-inclusion: Not every language recognizable by a
TM is also recognizable by a FA.

« completeness: “Hardest” language in a class

e robustness: alternative characterizations of classes

— e.g., FA-recognizable languages by regular expressions
(UNIX)

9/2/2019 L1.17

. ?
299 Why study theory of computation

» alanguage for talking about program behavior

» feasibility (what can and cannot be done)
— halting problem, NP-completeness
» analyzing correctness and resource usage

« computationally hard problems are essential for
cryptography
 computation is fundamental to understanding the world

— cells, brains, social networks, physical systems all can be
viewed as computational devices

« |IT IS FUN!!

9/2/2019 L1.18

N 8

+ www.gograph.com

Boss, | can’t find an efficient algorithm. | guess | ‘m just too dumb.

0

»

Boss, I can’t find an efficient algorithm, because no such
algorithm is possible.

9/2/2019 Sofya Raskhodnikova; based on cartoon by Garey & Johnson, 1979

L1.20

fﬁ Parts of the course

|. Automata Theory
I1. Computability Theory
[11.Complexity Theory

99999999 L1.21

3%% Finite automata (FA)

0111 -- accepted
01110 -- rejected

Each string is either accepted or rejected by the automaton
depending on whether it is in an accept state at the end.

9/2/2019 L1.22

3%% Anatomy of finite automaton

States— /'\ accept states
WOWG
0,1
/ \
—~(& &
v\o y
start state (q) states

99999999 1123

fﬁ Formal Definition

A finite automaton is a 5-tuple M = (Q, X%, 6, q,, F)
Q 1s the set of states
2. 1s the alphabet
0 . Q x X — Q 1sthe transition function
g, € Q Is the start state
F < Q Is the set of accept states

L(M) = the language of machine M
= set of all (finite) strings machine M accepts
M recognizes the language L(M)

9/2/2019 L1.24

339 | Examples of FAs

q O’l

L(M) = {@| w is a string of Os and 1s}

— ()= () Do

L(M) = {€} where ¢ denotes the empty string

9/2/2019 L1.25

fﬁ Examples of FAS

0 0

N0
~O=®

L(M)= {w | w has an even number of 1s}

9/2/2019 L1.26

3%52 Examples of FAs

Build an automaton that accepts all (and only those)
strings that contain 001

1
1 0 0

N, 0 0H
MO OO @

9/2/2019 L1.27

399 | Formal definition of FA

M=(Q,Z 38, gy F) where Q ={q,, 9y, 9, 93}
> ={0,1}

0:0Qx2— Qtransition function™
0, € Q Is start state

F = {ql, d,} < Q accept states
/ \ n Yo
- @ 41
0 y 4>
\ /1 k!

9/2/2019 Sofya Raskhodnikova; based on slides by Nick Hopper L2.29

3%32 Language of FA

(M) = the language of machine M
= set of all strings machine M accepts
M recognizes the language L(M)

9/2/2019 Sofya Raskhodnikova; based on slides by Nick Hopper 1.2.30

