
9/2/2019

Sofya Raskhodnikova

Theory of Computation

LECTURE 1
Theory of Computation

• Course information

• Overview of the area

• Finite Automata

Sofya Raskhodnikova; Intro Theory of Computation

Course information

1. Course staff

2. Course website(s)

3. Piazza bonus

4. Prerequisites

5. Textbook(s)

6. Syllabus

7. Homework logistics

8. Collaboration policy

9. Exams and grading

Sofya Raskhodnikova; Intro Theory of Computation 9/2/2019 L1.2

Tips for the course

• Concepts in this course take some time to sink in:

be careful not to fall behind.

• Do the assigned reading on each topic before the

corresponding lecture.

• Take advantage of office hours.

• Be active in lectures/recitations and on piazza.

• Allocate lots of time for the course: comparable

to a project course, but spread more evenly.

9/2/2019 L1.3

Tips for the course: HW

• Start working on HW early.

• Spread your HW time over multiple days.

• You can work in groups (up to 4 people), but

spend 1-2 hours thinking about it on your own

before your group meeting.

9/2/2019 L1.4

Tips: learning problem solving

To learn problem solving, you have to do it:

• Try to think how you would solve any presented

problem before you read/hear the answer.

• Do exercises in addition to HW.

9/2/2019 L1.5

Tips: how to read a math text

• Not like reading a mystery novel.

• The goal is not to get the answers, but to learn

the techniques.

• Always try to foresee what is coming next.

• Always think how you would approach a

problem before reading the solution.

• This applies to things that are not explicitly

labeled as problems.

9/2/2019 L1.6

Skills we will work on

• Mathematical reasoning

• Expressing your ideas

– abstractly (suppress inessential details)

– precisely (rigorously)

• Mathematical modeling

• Algorithmic thinking

• Problem solving

• Having FUN with all of the above!!!

9/2/2019 L1.7

Could they ask me questions

about CS 332 material on job interviews?

 You bet.

9/2/2019 L1.8

What is Theory of Computation?

• You’ve learned about computers and

programming

• Much of this knowledge is specific to particular

computing environment

9/2/2019 L1.10

What is Theory of Computation?

• Theory
– General ideas that apply to many systems

– Expressed simply, abstractly, precisely

• Abstraction suppresses inessential details

• Precision enables rigorous analysis

– Correctness proofs for algorithms and system designs

– Formal analysis of complexity

• Proof that there is no algorithm to solve some problem in

some setting (with certain cost)

9/2/2019 L1.11

This course

• Theory basics
– Models for machines

– Models for the problems machines can be used to solve

– Theorems about what kinds of machines can solve what kinds

of problems, and at what cost

– Theory needed for sequential single-processor computing

• Not covered:

– Parallel machines

– Distributed systems

– Quantum computation

– Sublinear computation

– Real-time systems

– Mobile computing

– Embedded systems

– …
9/2/2019 L1.12

Machine models

• Finite Automata (FAs): machines with fixed amount

of unstructured memory

– useful for modeling chips, communication protocols,

adventure games, some control systems, …

• Pushdown Automata (PDAs): FAs with unbounded

structured memory in the form of a pushdown stack

– useful for modeling parsing, compilers, some calculations

• Turing Machines (TMs): FAs with unbounded tape

– Model for general sequential computation (real computer).

– Equivalent to RAMs, various programming languages models

– Suggest general notion of computability

9/2/2019 L1.13

Machine models

• Resource-bounded TMs (time and space bounded):

– “not that different” on different models: “within a polynomial

factor”

• Probabilistic TMs: extension of TMs that allows

random choices

Most of these models have nondeterministic variants:

can make nondeterministic “guesses”

9/2/2019 L1.14

Problems solved by machines

1. What is a problem?

2. What does it mean for a machine to “solve”

a problem?

In this course, problem is a language.

A language is a set of strings over some “alphabet”

9/2/2019 L1.15

Examples of languages

• L1= {binary representations of natural numbers divisible by 2}

• L2= {binary representations of primes}

• L3= {sequences of decimal numbers, separated by commas, that

can be divided into 2 groups with the same sum}

– (5,3,1,3)  L3, (15,7,5,9,1) L3.

• L4= {C programs that loop forever on some input}

• L5= {representations of graphs containing a Hamiltonian cycle}

– {(1,2,3,4,5); (1,2),(1,3),(2,3),…}

1

2

3

45

alphabet = {0,1}

alphabet = {0,1,…,9,comma}

visits each node exactly once

vertices edges

alphabet = all symbols: digits, commas, parens

9/2/2019 L1.16

Theorems about classes of languages

We will define classes of languages and prove

theorems about them:

• inclusion: Every language recognizable (i.e., solvable)

by a FA is also recognizable by a TM.

• non-inclusion: Not every language recognizable by a

TM is also recognizable by a FA.

• completeness: “Hardest” language in a class

• robustness: alternative characterizations of classes

– e.g., FA-recognizable languages by regular expressions

(UNIX)

9/2/2019 L1.17

Why study theory of computation?

• a language for talking about program behavior

• feasibility (what can and cannot be done)

– halting problem, NP-completeness

• analyzing correctness and resource usage

• computationally hard problems are essential for

cryptography

• computation is fundamental to understanding the world

– cells, brains, social networks, physical systems all can be

viewed as computational devices

• IT IS FUN!!!

9/2/2019 L1.18

Is it useful for developers?

Boss, I can’t find an efficient algorithm, because no such

algorithm is possible.

9/2/2019 L1.20Sofya Raskhodnikova; based on cartoon by Garey & Johnson, 1979

Boss, I can’t find an efficient algorithm. I guess I ‘m just too dumb.

Parts of the course

9/2/2019

I. Automata Theory

II. Computability Theory

III.Complexity Theory

L1.21

Finite automata (FA)

0
0,1

00

1

1

1

0111 0111

0111

01110111

0111 -- accepted

01110 -- rejected

9/2/2019

Each string is either accepted or rejected by the automaton

depending on whether it is in an accept state at the end.

L1.22

Anatomy of finite automaton

9/2/2019

0
0,1

00

1

1

1
states

states

q0

q1

q2

q3

start state (q0)

accept states

(F)

L1.23

Formal Definition

9/2/2019

Q is the set of states

Σ is the alphabet

 : Q  Σ → Q is the transition function

q0  Q is the start state

F  Q is the set of accept states

A finite automaton is a 5-tuple M = (Q, Σ, , q0, F)

L(M) = the language of machine M

= set of all (finite) strings machine M accepts

M recognizes the language L(M)
L1.24

Examples of FAs

9/2/2019

0,1q0

L(M) = {w | w is a string of 0s and 1s}

q0

L(M) = {ε} where ε denotes the empty string

0,1q1
0,1

L1.25

Examples of FAs

9/2/2019

q0 q1

0 0

1

1

L(M) = {w | w has an even number of 1s}

L1.26

1 0

1

q q00q0 q001

0 0 1

0,1

Build an automaton that accepts all (and only those)

strings that contain 001

9/2/2019

Examples of FAs

L1.27

Formal definition of FA

L2.299/2/2019 Sofya Raskhodnikova; based on slides by Nick Hopper

Q = {q0, q1, q2, q3}

Σ = {0,1}

 : Q  Σ → Q transition function*
q0  Q is start state

F = {q1, q2}  Q accept states

M = (Q, Σ, , q0, F) where

M q2

0
0,1

00

1

1

1

q0

q1

q3

 0 1

q0 q0 q1

q1 q2 q2

q2 q3 q2

q3 q0 q2

*

Language of FA

9/2/2019 L2.30Sofya Raskhodnikova; based on slides by Nick Hopper

L(M) = the language of machine M

= set of all strings machine M accepts

M recognizes the language L(M)

