
9/5/2019

Sofya Raskhodnikova

Intro to Theory of Computation

LECTURE 2
Last time:

• Finite Automata

Today:

• Finite Automata

• Operations on languages

• Nondeterminism
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Homework 0 due

Homework 1 out

Tomorrow:



Review: FAs
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Review: Formal Definition
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Q is the set of states

Σ is the alphabet

 : Q  Σ → Q  is the transition function

q0  Q is the start state

F  Q is the set of accept states

A finite automaton is a 5-tuple M = (Q, Σ, , q0, F) 

L(M) = the language of machine M

= set of all strings machine M accepts

M recognizes the language L(M)
L1.3



Formal definition of FA
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Q = {q0, q1, q2, q3}

Σ = {0,1}

 : Q  Σ → Q transition function*
q0  Q is start state

F  = {q1, q2}  Q accept states

M = (Q, Σ, , q0, F)  where
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A language is regular if it is recognized by 

a finite automaton

L = { w | w contains 001} is regular

L = { w | w has an even number of 1s} is regular
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Regular languages

Many interesting programs recognize regular

languages

NETWORK PROTOCOLS

COMPILERS

GENETIC TESTING

ARITHMETIC

L2.5



INTERNET TRANSMISSION CONTROL 

PROTOCOL

Let TCPS = { w | w is a complete TCP Session}

Theorem. TCPS is regular
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LET 3 = 

• A string over 3 has three ROWS

• Each ROW b0b1b2…bN represents the integer 

b0 + 2b1 + … + 2NbN.

• Let ADD = {S | ROW1 + ROW2 = ROW3 } 

Theorem. ADD is regular.
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Arithmetic
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COMMENTS :

Are delimited by /* */

Cannot have NESTED /* */

Must be CLOSED by */

*/ is ILLEGAL outside a comment

COMMENTS = {strings over {0,1, /, *} with legal comments}

Theorem. COMMENTS is regular.

Compilers
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DNA SEQUENCES are strings over the alphabet {A,C,G,T}.

A GENE g is a special substring.

A GENETIC TEST searches a  DNA SEQUENCE for a gene.

GeneticTestg = {strings over {A,C, G, T} containing a copy of g}

Theorem. GeneticTestg is regular for every gene g.

Genetic testing
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Operations on languages
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Union: A  B = { w | w  A or w  B } 

Intersection: A  B = { w | w  A and w  B } 

Complement: 𝑨 = 𝒘 𝒘 ∉ 𝑨}

Reverse: AR = { w1 …wk | wk …w1  A }

Concatenation: A  B = { vw | v  A and w  B }

Star: A* = { w1 …wk | k ≥ 0 and each wi  A }

Regular

Union: A  B = { w | w  A or w  B } 

Concatenation: A  B = { vw | v  A and w  B }

Star: A* = { w1 …wk | k ≥ 0 and each wi  A }
= {ε}  A  AA  AAA  AAAA …= {ε}  A  AA  AAA  AAAA …



Closure properties of the class 

of regular languages
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THEOREM. The class of regular languages 

is closed under all 6 operations.  

If A and B are regular, applying any of these 

operation yields a  regular language.



Closure properties
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Theorem. The complement of a regular language

is also a regular language.

Proof:

Complement: 𝑨 = { w | w  A } 



Closure properties
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Union: A  B = { w | w  A or w  B } 

Complement: 𝑨 = { w | w  A } 



Closure under union
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Theorem. The union of two regular 

languages is also a regular language

Proof: Consider two regular languages A1 and A2. 

Prove that A1 ∪ A2 is regular. 

Let M1 = (Q1, Σ, 1, q0, F1)  be finite automaton for A1

and M2 = (Q2, Σ, 2, q0, F2) be finite automaton for A2

Construct a finite automaton M = (Q, Σ, , q0, F) 

that recognizes A = A1 ∪ A2

1

2



Example
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Proof (continued)
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Idea: Run both M1 and M2 at the same time!

Q = pairs of states, one from M1 and one from M2

= { (q1, q2) | q1  Q1 and q2  Q2 }

= Q1  Q2

q0 = (q0, q0)
1 2

F = { (q1, q2) | q1  F1 or q2  F2 }

( (q1,q2), ) = (1(q1, ), 2(q2, )) 



Example (continued)
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Closure properties
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Union: A  B = { w | w  A or w  B } 

Intersection: A  B = { w | w  A and w  B } 

Complement: A = { w | w  A } 

Reverse: AR = { w1 …wk | wk …w1  A }



Closure under reverse
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Theorem. The reverse of a regular 

language is also a regular language

Proof:  Let A be a regular language and

𝑴 be a finite automaton that recognizes it.

Construct a finite automaton 𝑴′ recognizing AR. 

Idea: Define 𝑴′ as M with the arrows reversed.

Swap start and accept states.



Closure under reverse

L2.209/5/2019 Sofya Raskhodnikova; based on slides by Nick Hopper

𝑀′ IS NOT ALWAYS A DFA!

It may have many start states.

Some states may have too 

many outgoing edges, or none.



Example
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NONDETERMINISM
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What happens with 100?

Nondeterministic Finite Automaton (NFA) accepts if 

there is a way to make it reach an accept state.


