Intro to Theory of Computation

LECTURE 2

Last time:

Finite Automata

Today:

- Finite Automata
- Operations on languages
- Nondeterminism

Tomorrow: Homework 0 due

Homework 1 out

Sofya Raskhodnikova

Review: FAs

Review: Formal Definition

A finite automaton is a 5-tuple $\mathbf{M} = (\mathbf{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \mathbf{q}_0, \mathbf{F})$

• is the set of states

 Σ is the alphabet

 $\delta: \mathbb{Q} \times \Sigma \to \mathbb{Q}$ is the transition function

 $q_0 \in Q$ is the start state

 $\mathbf{F} \subseteq \mathbf{Q}$ is the set of accept states

L(M) = the *language* of machine M

= set of all strings machine M accepts

M recognizes the language L(M)

9/5/2019

Formal definition of FA

$$M = (Q, \Sigma, \delta, q_0, F)$$
 where

$$Q = \{q_0, q_1, q_2, q_3\}$$

 $\Sigma = \{0,1\}$

 $\delta: \mathbb{Q} \times \Sigma \to \mathbb{Q}$ transition function $q_0 \in Q$ is start state

 $F = \{q_1, q_2\} \subseteq Q$ accept states

Regular languages

A language is regular if it is recognized by a finite automaton

```
L = { w | w contains 001} is regular
L = { w | w has an even number of 1s} is regular
```

Many interesting programs recognize regular languages

NETWORK PROTOCOLS

COMPILERS

GENETIC TESTING

ARITHMETIC

9/5/2019 L2.5

INTERNET TRANSMISSION CONTROL PROTOCOL

Arithmetic

LET
$$\Sigma_3 = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$

- A string over Σ_3 has three ROWS
- Each ROW b₀b₁b₂...b_N represents the integer

$$b_0 + 2b_1 + ... + 2^N b_N$$
.

• Let $ADD = \{S \mid ROW_1 + ROW_2 = ROW_3\}$

Theorem. ADD is regular.

CS 332

Compilers

COMMENTS:

```
Are delimited by /* */
Cannot have NESTED /* */
Must be CLOSED by */
*/ is ILLEGAL outside a comment
```

COMMENTS = {strings over $\{0,1,/,*\}$ with legal comments}

Theorem. COMMENTS is regular.

Genetic testing

DNA SEQUENCES are strings over the alphabet {A,C,G,T}.

A GENE g is a special substring.

A GENETIC TEST searches a DNA SEQUENCE for a gene.

GeneticTest_g = {strings over {A,C, G, T} containing a copy of g}

Theorem. GeneticTest_g is regular for every gene g.

Regular Operations on languages

Complement: $\overline{A} = \{w \mid w \notin A\}$

Union:

Intersection:

Reverse:

Concatenation:

Star:

 $= \{\epsilon\} \cup A \cup AA \cup AAA \cup AAAA \cup ...$

Closure properties of the class of regular languages

THEOREM. The class of regular languages is **closed** under all 6 operations.

If A and B are regular, applying any of these operation yields a regular language.

Closure properties

Complement: $\overline{A} = \{ w \mid w \notin A \}$ Theorem. The complement of a regular language is also a regular language.

Proof:

Closure properties

Complement: $\overline{A} = \{ w \mid w \notin A \}$

Union: $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$

Closure under union

Theorem. The union of two regular languages is also a regular language

Proof: Consider two regular languages A_1 and A_2 . Prove that $A_1 \cup A_2$ is regular.

Let $M_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1)$ be finite automaton for A_1 and $M_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2)$ be finite automaton for A_2

Construct a finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes $A = A_1 \cup A_2$

Example

CS 332

Proof (continued)

Idea: Run both M₁ and M₂ at the same time!

$$Q$$
 = pairs of states, one from M_1 and one from M_2

=
$$\{ (q_1, q_2) | q_1 \in Q_1 \text{ and } q_2 \in Q_2 \}$$

$$= Q_1 \times Q_2$$

$$q_0 = (q_0^1, q_0^2)$$

$$F = \{ (q_1, q_2) \mid q_1 \in F_1 \text{ or } q_2 \in F_2 \}$$

$$\delta((\mathbf{q}_1,\mathbf{q}_2),\,\sigma)=(\delta_1(\mathbf{q}_1,\,\sigma),\,\delta_2(\mathbf{q}_2,\,\sigma))$$

Example (continued)

Closure properties

Complement: $\neg A = \{ w \mid w \notin A \}$

Union: $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$

Intersection: $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$

Reverse: $A^{R} = \{ w_{1} ... w_{k} \mid w_{k} ... w_{1} \in A \}$

Closure under reverse

Theorem. The reverse of a regular language is also a regular language

Proof: Let A be a regular language and M be a finite automaton that recognizes it.

Construct a finite automaton M' recognizing A^R .

Idea: Define M' as M with the arrows reversed. Swap start and accept states.

Closure under reverse

M' IS NOT ALWAYS A DFA!

It may have many start states.

Some states may have too many outgoing edges, or none.

Example

NONDETERMINISM

Nondeterministic Finite Automaton (NFA) accepts if there is a way to make it reach an accept state.