Lecture 2

Last time:
• Finite Automata

Today:
• Finite Automata
• Operations on languages
• Nondeterminism

Tomorrow:
Homework 0 due
Homework 1 out

Sofya Raskhodnikova

Sofya Raskhodnikova; based on slides by Nick Hopper
Review: FAs

Diagram:

- States: q_0, q_1
- Transitions:
 - $q_0 \xrightarrow{0} q_0$
 - $q_0 \xrightarrow{1} q_1$
 - $q_1 \xrightarrow{1} q_1$
 - $q_1 \xrightarrow{0} q_0$

Sofya Raskhodnikova; based on slides by Nick Hopper
A finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

- Q is the set of states
- Σ is the alphabet
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

$L(M) =$ the language of machine M

$= \text{set of all strings machine } M \text{ accepts}$

$M \text{ recognizes the language } L(M)$
Formal definition of FA

\[M = (Q, \Sigma, \delta, q_0, F) \]

where

- \(Q = \{q_0, q_1, q_2, q_3\} \)
- \(\Sigma = \{0, 1\} \)
- \(\delta : Q \times \Sigma \rightarrow Q \) is the transition function
- \(q_0 \in Q \) is the start state
- \(F = \{q_1, q_2\} \subseteq Q \) are the accept states

\[\delta \]

<table>
<thead>
<tr>
<th>(\delta)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(q_1)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(q_2)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(q_3)</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Regular languages

A language is **regular** if it is recognized by a finite automaton

\[L = \{ w \mid w \text{ contains 001} \} \text{ is regular} \]
\[L = \{ w \mid w \text{ has an even number of 1s} \} \text{ is regular} \]

Many interesting programs recognize regular languages

NETWORK PROTOCOLS

COMPILERS

GENETIC TESTING

ARITHMETIC
Let $\text{TCPS} = \{ w \mid w \text{ is a complete TCP Session} \}$

Theorem. TCPS is regular.
Arithmetic

\[
\text{LET } \Sigma_3 = \{ [0], [0], [0], [0], [0], [0], [1] \}

- A string over \(\Sigma_3 \) has three ROWS
- Each ROW \(b_0b_1b_2...b_N \) represents the integer \(b_0 + 2b_1 + ... + 2^Nb_N \).
- Let \(\text{ADD} = \{ S | \text{ROW}_1 + \text{ROW}_2 = \text{ROW}_3 \} \)

Theorem. \(\text{ADD} \) is regular.
COMMENTS:
Are delimited by /* */
Cannot have NESTED /* */
Must be CLOSED by */
*/ is ILLEGAL outside a comment

COMMENTS = \{ \text{strings over \{0,1, /, *\} with legal comments} \}

Theorem. COMMENTS is regular.
DNA SEQUENCES are strings over the alphabet \{A,C,G,T\}.

A GENE g is a special substring.

A GENETIC TEST searches a DNA SEQUENCE for a gene.

$\text{GeneticTest}_g = \{\text{strings over } \{A,C,G,T\} \text{ containing a copy of } g\}$

Theorem. GeneticTest$_g$ is regular for every gene g.

Sofya Raskhodnikova; based on slides by Nick Hopper
Regular Operations on languages

Complement: $\overline{A} = \{ w \mid w \notin A \}$

Union:

Intersection:

Reverse:

Concatenation:

Star:

$= \{ \epsilon \} \cup A \cup AA \cup AAA \cup AAAA \cup ...$
THEOREM. The class of regular languages is **closed** under all 6 operations.

If A and B are regular, applying any of these operation yields a regular language.
Closure properties

Complement: \(\bar{A} = \{ w \mid w \notin A \} \)

Theorem. The complement of a regular language is also a regular language.

Proof:
Closure properties

Complement: $\overline{A} = \{ w \mid w \notin A \}$

Union: $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$
Theorem. The union of two regular languages is also a regular language.

Proof: Consider two regular languages A_1 and A_2. Prove that $A_1 \cup A_2$ is regular.

Let $M_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1)$ be finite automaton for A_1 and $M_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2)$ be finite automaton for A_2.

Construct a finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes $A = A_1 \cup A_2$.
Example

\[M = ? \]
Idea: Run both M_1 and M_2 at the same time!

$Q = \text{pairs of states, one from } M_1 \text{ and one from } M_2$

$= \{ (q_1, q_2) \mid q_1 \in Q_1 \text{ and } q_2 \in Q_2 \}$

$= Q_1 \times Q_2$

$q_0 = (q_0^1, q_0^2)$

$F = \{ (q_1, q_2) \mid q_1 \in F_1 \text{ or } q_2 \in F_2 \}$

$\delta((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$
Example (continued)

\[M_1 \]

\[M_2 \]

\[M \text{ intersection} \]
Closure properties

Complement: \(-A = \{ w \mid w \notin A \} \)

Union: \(A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \)

Intersection: \(A \cap B = \{ w \mid w \in A \text{ and } w \in B \} \)

Reverse: \(A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A \} \)
Closure under reverse

Theorem. The reverse of a regular language is also a regular language.

Proof: Let A be a regular language and M be a finite automaton that recognizes it.

Construct a finite automaton M' recognizing A^R.

Idea: Define M' as M with the arrows reversed. Swap start and accept states.
Closure under reverse

M' IS NOT ALWAYS A DFA!

It may have many start states.
Some states may have too many outgoing edges, or none.
Example
What happens with 100?

Nondeterministic Finite Automaton (NFA) accepts if there is a way to make it reach an accept state.