Last time:
• DFAs and NFAs
• Operations on languages

Today:
• Nondeterminism
• Equivalence of NFAs and DFAs
• Closure properties of regular languages
Nondeterministic Finite Automaton (NFA) accepts a string w if there is a way to make it reach an accept state on input w.
Example

$L(M) = \{1, 00\}$

Sofya Raskhodnikova; based on slides by Nick Hopper
$L(M) = \{ w \mid w \text{ contains 101 or 11} \}$
Exercise

What is the language of this NFA?

\(0^k\) means \(00\ldots0\)

A. \(\{0^k | k \text{ is a multiple of } 2\}\).
B. \(\{0^k | k \text{ is a multiple of } 3\}\).
C. \(\{0^k | k \text{ is a multiple of } 6\}\).
D. \(\{0^k | k \text{ is a multiple of } 2 \text{ or } 3\}\).
E. None of the above.
Formal Definition

- An **NFA** is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$
 - Q is the set of states
 - Σ is the alphabet
 - $\delta : Q \times \Sigma_\varepsilon \rightarrow P(Q)$ is the transition function
 - $q_0 \in Q$ is the start state
 - $F \subseteq Q$ is the set of accept states

- $\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}$ and $P(Q)$ is the set of subsets of Q

- M accepts a string w if there is a path from q_0 to an accept state that w follows.
Example

\[N = (Q, \Sigma, \delta, q_0, F) \]

\[Q = \{q_0, q_1, q_2, q_3\} \]

\[\Sigma = \{0,1\} \]

\[F = \{q_3\} \]

\[\delta(q_0,0) = \{q_0\} \]

\[\delta(q_0,1) = \{q_0, q_1, q_2\} \]

\[\delta(q_1,\varepsilon) = \{q_1, q_2\} \]

\[\delta(q_2,0) = \emptyset \]
Nondeterminism

Ways to think about nondeterminism

- parallel computation
- tree of possible computations
- guessing and verifying the “right” choice
NFAs ARE SIMPLER THAN DFAs

A DFA that recognizes the language \{1\}:

- \(0\)

An NFA that recognizes the language \{1\}:

- \(1\)
A DFA recognizing \{1\}

Theorem. Every DFA for language \{1\} must have at least 3 states.

Proof:
Theorem. Every NFA has an equivalent DFA.

Corollary: A language is regular iff it is recognized by an NFA.
NFA to DFA Conversion

Input: \(N = (Q, \Sigma, \delta, q_0, F) \)

Output: \(M = (Q', \Sigma, \delta', q_0', F') \)

Intuition: Do the computation in parallel, maintaining the set of states where all threads are.

Idea:
\[Q' = P(Q) \]
NFA to DFA Conversion

Input: $N = (Q, \Sigma, \delta, q_0, F)$
Output: $M = (Q', \Sigma, \delta', q_0', F')$

$Q' = P(Q)$

$\delta' : Q' \times \Sigma \rightarrow Q'$

$\delta'(R, \sigma) = \text{for all } R \subseteq Q \text{ and } \sigma \in \Sigma.$

$q_0' = \text{ }$

$F' = \text{ }$
Example: NFA to DFA

1)

- Transition from state a on input 1 to state b.
Examples NFA to DFA

2)
NFA to DFA Conversion

Input: \(N = (Q, \Sigma, \delta, q_0, F) \)
Output: \(M = (Q', \Sigma, \delta', q_0', F') \)

For \(R \subseteq Q \), let \(E(R) \) be the set of states reachable by \(\epsilon \)-transitions from the states in \(R \).

\[
\begin{align*}
Q' &= \mathcal{P}(Q) \\
\delta' : Q' \times \Sigma &\rightarrow Q' \\
\delta'(R, \sigma) &= \bigcup_{r \in R} (\delta(r, \sigma)) \quad \text{for all } R \subseteq Q \text{ and } \sigma \in \Sigma. \\
q_0' &= (\{q_0\}) \\
F' &= \{ R \in Q' \mid R \text{ contains some accept state of } N \}
\end{align*}
\]
Regular Operations on languages

Complement: \(\overline{A} = \{ w \mid w \notin A \} \)

Union: \(A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \)

Intersection: \(A \cap B = \{ w \mid w \in A \text{ and } w \in B \} \)

Reverse: \(A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A \} \)

Concatenation: \(A \circ B = \{ vw \mid v \in A \text{ and } w \in B \} \)

Star: \(A^* = \{ w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \} \)
THEOREM. The class of regular languages is closed under all 6 operations.

If A and B are regular, applying any of these operation yields a regular language.
A palindrome is a word or a phrase that reads the same forward and backward.

Examples

• mom
• madam
• Never odd or even.
• Stressed? No tips? Spit on desserts!
Let \(L \) be the set of words in English.

Then \(L \cap L^R \) is

A. The set of English words in alphabetical order, followed by the same words in reverse alphabetical order.

B. \(\{w \mid w \text{ is an English word or an English word written backwards}\} \).

C. \(\{w \mid w \text{ is an English word that is a palindrome}\} \).

D. None of the above.
Theorem. The reverse of a regular language is also regular.

Proof: Let L be a regular language and M be a DFA that recognizes it. Construct an NFA M' recognizing L^R:

- Define M' as M with the arrows reversed.
- Make the start state of M be the accept state in M'.
- Make a new start state that goes to all accept states of M by ε-transitions.
New construction for $A \cup B$

Construct an NFA M:

$L(M_A) = A$

$L(M_B) = B$
Concatenation operation

Concatenation: $A \circ B = \{ vw \mid v \in A \text{ and } w \in B \}$

Theorem. If A and B are regular, $A \circ B$ is also regular.

Proof: Given DFAs M_1 and M_2, construct NFA by connecting all accept states in M_1 to the start state in M_2.

$L(M_1) = A$

$L(M_2) = B$
Concatenation: \(A \circ B = \{ vw \mid v \in A \text{ and } w \in B \} \)

Theorem. If \(A \) and \(B \) are regular, \(A \circ B \) is also regular.

Proof: Given DFAs \(M_1 \) and \(M_2 \), construct NFA by connecting all accept states in \(M_1 \) to the start state in \(M_2 \).

- Make all states in \(M_1 \) non-accepting.

\[
\epsilon \quad \epsilon \\
L(M_1) = A \quad L(M_2) = B
\]
Star operation

Star: $A^* = \{ w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \}$

Theorem. If A is regular, A^* is also regular.
The class of regular languages is closed under

Regular operations

Union: \(A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \)

Concatenation: \(A \circ B = \{ vw \mid v \in A \text{ and } w \in B \} \)

Star: \(A^* = \{ w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \} \)

Other operations

Complement: \(\overline{A} = \{ w \mid w \notin A \} \)

Intersection: \(A \cap B = \{ w \mid w \in A \text{ and } w \in B \} \)

Reverse: \(A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A \} \)