Intro to Theory of Computation

LECTURE 3

Last time:

- DFAs and NFAs
- Operations on languages

Today:

- Nondeterminism
- Equivalence of NFAs and DFAs
- Closure properties of regular languages

Sofya Raskhodnikova

Nondeterminism

Nondeterministic Finite Automaton (NFA) accepts a string w if there is a way to make it reach an accept state on input w.

Example

Example

L(M)={w | w contains 101 or 11}

Exercise

What is the language of this NFA? $(0^k \text{ means } (00...0))$ A. $\{0^k \mid k \text{ is a multiple of } 2\}$. B. $\{0^k \mid k \text{ is a multiple of } 3\}.$

D. $\{0^k \mid k \text{ is a multiple of 2 or 3}\}.$

C. $\{0^k \mid k \text{ is a multiple of 6}\}.$

E. None of the above.

Formal Definition

- An *NFA* is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$
 - is the set of states
 - Σ is the alphabet
 - $\delta: \mathbf{Q} \times \mathbf{\Sigma}_{\varepsilon} \to \mathbf{P}(\mathbf{Q})$ is the transition function
 - $q_0 \in Q$ is the start state
 - $\mathbf{F} \subseteq \mathbf{Q}$ is the set of accept states
- $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$ and P(Q) is the set of subsets of Q
- M accepts a string w if there is a path from q_0 to an accept state that w follows.

CS 332

Example

$$N = (Q, \Sigma, \delta, q_0, F)$$

$$Q = \{q_{0}, q_{1}, q_{2}, q_{3}\}$$

$$\Sigma = \{0,1\}$$

$$\mathsf{F} = \{\mathsf{q}_3\}$$

$$\delta(\mathbf{q}_0,\mathbf{0}) = \{\mathbf{q}_0\}$$

$$\delta(q_0,1) = \{q_{0}, q_{1}, q_{2}\}$$

$$\delta(\mathbf{q}_1, \boldsymbol{\varepsilon}) = \{\mathbf{q}_1, \mathbf{q}_2\}$$

$$\delta(q_2,0) = \emptyset$$

Nondeterminism

Deterministic Computation accept or reject

Nondeterministic Computation

Ways to think about nondeterminism

- parallel computation
- tree of possible computations
- guessing and verifying the "right" choice

NFAs ARE SIMPLER THAN DFAs

An NFA that recognizes the language {1}:

A DFA recognizing {1}

Theorem. Every DFA for language {1} must have at least 3 states.

Proof:

9/10/2019 L3.11

Equivalence of NFAs & DFAs

Theorem. Every NFA has an equivalent DFA.

Corollary: A language is regular iff it is recognized by an NFA.

NFA to DFA Conversion

Input: $N = (Q, \Sigma, \delta, q_0, F)$

Output: $M = (Q', \Sigma, \delta', q_0', F')$

Intuition: Do the computation in parallel, maintaining the set of states where all threads are.

Idea:

$$Q' = P(Q)$$

NFA to DFA Conversion

Input: $N = (Q, \Sigma, \delta, q_0, F)$

Output: $M = (Q', \Sigma, \delta', q_0', F')$

$$Q' = P(Q)$$

 $\delta': \mathbf{Q}' \times \mathbf{\Sigma} \to \mathbf{Q}'$

$$\delta'(R,\sigma) =$$

for all $R\subseteq Q$ and $\sigma\in \Sigma$.

$$q_0' =$$

$$F' =$$

Example: NFA to DFA

Examples NFA to DFA

NFA to DFA Conversion

Input: $N = (Q, \Sigma, \delta, q_0, F)$

Output: $M = (Q', \Sigma, \delta', q_0', F')$

$$Q' = P(Q)$$

 $\delta': \mathbf{Q}' \times \mathbf{\Sigma} \to \mathbf{Q}'$

For $R\subseteq Q$, let E(R) be the set of states reachable by ε -transitions from the states in R.

$$\delta'(R,\sigma) = \bigcup_{r \in R} (\delta(r,\sigma))$$
 for all $R \subseteq Q$ and $\sigma \in \Sigma$.

$$q_0' = (\{q_0\})$$

 $F' = \{ R \in Q' \mid R \text{ contains some accept state of N} \}$

Regular Operations on languages

Complement: $\neg A = \{ w \mid w \notin A \}$

Union: $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$

Intersection: $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$

Reverse: $A^{R} = \{ w_{1} ... w_{k} | w_{k} ... w_{1} \in A \}$

Concatenation: $A \circ B = \{ vw \mid v \in A \text{ and } w \in B \}$

Star: $A^* = \{ w_1 ... w_k \mid k \ge 0 \text{ and each } w_i \in A \}$

Closure properties of the class of regular languages

THEOREM. The class of regular languages is **closed** under all 6 operations.

If A and B are regular, applying any of these operation yields a regular language.

Palindromes

A palindrome is a word or a phrase that reads the same forward and backward.

Examples

- mom
- madam
- Never odd or even.
- Stressed? No tips? Spit on desserts!

Exercise

Let L be the set of words in English.

Then $L \cap L^R$ is

- A. The set of English words in alphabetical order, followed by the same words in reverse alphabetical order.
- B. {w | w is an English word or an English word written backwords}.
- C. $\{w \mid w \text{ is an English word that is a palindrome}\}$.
- D. None of the above.

Closure under reverse

Theorem. The reverse of a regular language is also regular Proof: Let L be a regular language and M be a DFA that recognizes it. Construct an NFA M' recognizing L^R:

- Define M' as M with the arrows reversed.
- Make the start state of M be the accept state in M'.
- Make a new start state that goes to all accept states of M by ε-transitions.

New construction for A ∪ B

Construct an NFA M:

Concatenation operation

Concatenation: A ° B = { vw | v ∈ A and w ∈ B }

Theorem. If A and B are regular, A $^{\circ}$ B is also regular. Proof: Given DFAs M_1 and M_2 , construct NFA by connecting all accept states in M_1 to the start state in M_2 .

Concatenation operation

Concatenation: $A \circ B = \{ vw \mid v \in A \text{ and } w \in B \}$

Theorem. If A and B are regular, A $^{\circ}$ B is also regular. Proof: Given DFAs M_1 and M_2 , construct NFA by connecting all accept states in M_1 to the start state in M_2 .

Make all states in M₁ non-accepting.

Star operation

Star: $A^* = \{ w_1 ... w_k \mid k \ge 0 \text{ and each } w_i \in A \}$

Theorem. If A is regular, A* is also regular.

The class of regular languages is closed under

Regular operations

```
Union: A \cup B = \{ w \mid w \in A \text{ or } w \in B \}
```

Concatenation: $A \circ B = \{ vw \mid v \in A \text{ and } w \in B \}$

Star: $A^* = \{ w_1 ... w_k \mid k \ge 0 \text{ and each } w_i \in A \}$

Other operations

Complement: $\neg A = \{ w \mid w \notin A \}$

Intersection: $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$

Reverse: $A^{R} = \{ w_{1} ... w_{k} \mid w_{k} ... w_{1} \in A \}$