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Intro to Theory of Computation

LECTURE 3
Last time:

• DFAs and NFAs

• Operations on languages

Today:

• Nondeterminism

• Equivalence of NFAs and DFAs

• Closure properties of regular 

languages
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Nondeterminism
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Nondeterministic Finite Automaton (NFA) 

accepts a string w if there is a way to 

make it reach an accept state on input w.
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Example
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L(M)={1,00}

ε

ε



Example
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0,1

0,ε 1

0,1

1

L(M)={w | w contains 101 or 11}



Exercise

What is the language of this NFA?

(0𝑘 means  00…0 )

A. {0𝑘 ∣ 𝑘 is a multiple of 2}.

B. {0𝑘 ∣ 𝑘 is a multiple of 3}.

C. {0𝑘 ∣ 𝑘 is a multiple of 6}.

D. {0𝑘 ∣ 𝑘 is a multiple of 2 or 3}.

E. None of the above.
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Formal Definition
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Q is the set of states

Σ is the alphabet

q0  Q is the start state

F  Q is the set of accept states

• An NFA is a 5-tuple M = (Q, Σ, , q0, F) 
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 : Q  Σε → P(Q)  is the transition function

• Σε = Σ  {ε} and P(Q) is the set of subsets of Q 

• M accepts a string w if there is a path from q0 to 

an accept state that w follows.



Example
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0,1

0,ε 1

0,1

1

(q1,ε) = 

N = (Q, Σ, , q0, F)

Q = {q0, q1, q2, q3}

Σ = {0,1}

F  = {q3}

(q0,1) = {q0, q1, q2}

{q1,q2}

(q2,0) = 

q1 q2 q3q0

(q0,0) = {q0}



Nondeterminism

Ways to think about 

nondeterminism

• parallel 

computation

• tree of possible 

computations

• guessing and 

verifying the 

“right” choice
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Deterministic

Computation
Nondeterministic

Computation

accept or reject accept

reject
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NFAs ARE SIMPLER THAN DFAs

An NFA that recognizes the language {1}:

1

1 0,1

0,1
0

A DFA that recognizes 

the language {1}:
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A DFA recognizing {1}

Theorem. Every DFA for language {1} must have 

at least 3 states.

Proof:
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Equivalence of NFAs & DFAs
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Theorem. Every NFA has an equivalent DFA.

Corollary: A language is regular iff

it is recognized by an NFA.
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Input: N = (Q, Σ, ,  q0, F) 

Intuition: Do the computation 

in parallel, maintaining the set 

of states where all threads are.

Q = P(Q)

Idea:

accept

reject

NFA to DFA Conversion

Output: M = (Q, Σ, , q0, F) 
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(R,) =                                     for all R⊆Q and ∈Σ.

Q = P(Q)

 : Q  Σ → Q

q0 =

F = { R  Q | R contains some accept state of N}

NFA to DFA Conversion

Input: N = (Q, Σ, ,  q0, F) 

Output: M = (Q, Σ, , q0, F) 
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Example: NFA to DFA
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a b

1)
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Examples NFA to DFA

9/10/2019 Sofya Raskhodnikova; based on slides by Nick Hopper

0,1

ε 0
2 31

1

2)
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(R,) = ∪ E( (r,) )        for all R⊆Q and ∈Σ.

Q = P(Q)

 : Q  Σ → Q

rR

q0 = E({q0})

F = { R  Q | R contains some accept state of N}

NFA to DFA Conversion

Input: N = (Q, Σ, ,  q0, F) 

Output: M = (Q, Σ, , q0, F) 

For R⊆Q, let E(R) be the set of 

states reachable by ε-transitions 

from the states in R.
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Operations on languages
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Union: A  B = { w | w  A or w  B } 

Intersection: A  B = { w | w  A and w  B } 

Complement: A = { w | w  A } 

Reverse: AR = { w1 …wk | wk …w1  A }

Concatenation: A  B = { vw | v  A and w  B }

Star: A* = { w1 …wk | k ≥ 0 and each wi  A }

Regular

Union: A  B = { w | w  A or w  B } 

Concatenation: A  B = { vw | v  A and w  B }

Star: A* = { w1 …wk | k ≥ 0 and each wi  A }
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Closure properties of the class of 

regular languages
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THEOREM. The class of regular languages 

is closed under all 6 operations.  

If A and B are regular, applying any of these 

operation yields a  regular language.
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Palindromes

A palindrome is a word or a phrase that reads the 

same forward and backward.

Examples

• mom

• madam

• Never odd or even.

• Stressed? No tips? Spit on desserts!
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Exercise

Let L be the set of words in English.

Then 𝑳 ∩ 𝑳𝑹 is

A. The set of English words in alphabetical order, followed 

by the same words in reverse alphabetical order.

B. {𝑤 ∣ 𝑤 is an English word or an English word written 

backwords}.

C. {𝑤 ∣ 𝑤 is an English word that is a palindrome}.

D. None of the above.



Closure under reverse
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Theorem. The reverse of a regular language is also regular 

Proof:  Let L be a regular language and M be a DFA that

recognizes it. Construct an NFA 𝑴′ recognizing LR:

• Define 𝑴′ as M with the arrows 

reversed.

• Make the start state of M be the 

accept state in 𝑴′.

• Make a new start state that goes to all 

accept states of M by ε-transitions.

ε ε ε
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New construction for A ∪ B 
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ε

ε

Construct an NFA M:

L(MA)=A

L(MB)=B
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Concatenation operation
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Concatenation: A  B = { vw | v  A and w  B }

Theorem. If A and B are regular,  A  B is also regular. 

Proof: Given DFAs M1 and M2, construct NFA by 

connecting all accept states in M1 to the start state in M2.

ε

ε

L(M1)=A L(M2)=B
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Concatenation operation
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Concatenation: A  B = { vw | v  A and w  B }

Theorem. If A and B are regular,  A  B is also regular. 

Proof: Given DFAs M1 and M2, construct NFA by 

connecting all accept states in M1 to the start state in M2.

• Make all states in M1 non-accepting.

ε

ε

L(M1)=A L(M2)=B
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Star operation
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Star: A* = { w1 …wk | k ≥ 0 and each wi  A }

Theorem. If A is regular, A* is also regular. 

L(M)=A
ε

ε

ε
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The class of regular languages is 

closed under
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Union: A  B = { w | w  A or w  B } 

Intersection: A  B = { w | w  A and w  B } 

Complement: A = { w | w  A } 

Reverse: AR = { w1 …wk | wk …w1  A }

Regular operations

Union: A  B = { w | w  A or w  B } 

Concatenation: A  B = { vw | v  A and w  B }

Star: A* = { w1 …wk | k ≥ 0 and each wi  A }

Other operations
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