Intro to Theory of Computation

Lecture 3

Last time:
- DFAs and NFAs
- Operations on languages

Today:
- Nondeterminism
- Equivalence of NFAs and DFAs
- Closure properties of regular languages

Sofya Raskhodnikova

Sofya Raskhodnikova; based on slides by Nick Hopper
What is the language of this NFA?

\(\{0^k \mid k \text{ is a multiple of } 2\} \).

B. \(\{0^k \mid k \text{ is a multiple of } 3\} \).

C. \(\{0^k \mid k \text{ is a multiple of } 6\} \).

D. \(\{0^k \mid k \text{ is a multiple of } 2 \text{ or } 3\} \).

E. None of the above.
Nondeterministic Finite Automaton (NFA) accepts a string w if there is a way to make it reach an accept state on input w.
Formal Definition

- An **NFA** is a 5-tuple \(M = (Q, \Sigma, \delta, q_0, F) \)
 - \(Q \) is the set of states
 - \(\Sigma \) is the alphabet
 - \(\delta : Q \times \Sigma \epsilon \rightarrow P(Q) \) is the transition function
 - \(q_0 \in Q \) is the start state
 - \(F \subseteq Q \) is the set of accept states
- \(\Sigma \epsilon = \Sigma \cup \{\epsilon\} \) and \(P(Q) \) is the set of subsets of \(Q \)
- \(M \) **accepts** a string \(w \) if there is a path from \(q_0 \) to an accept state that \(w \) follows.

Sofya Raskhodnikova; based on slides by Nick Hopper
Example

Let $N = (Q, \Sigma, \delta, q_0, F)$ be a deterministic finite automaton (DFA), where:

- $Q = \{q_0, q_1, q_2, q_3\}$
- $\Sigma = \{0, 1\}$
- $F = \{q_3\}$
- $\delta(q_0, 0) = \{q_0\}$
- $\delta(q_0, 1) = \{q_0, q_1, q_2\}$
- $\delta(q_1, \varepsilon) = \{q_1, q_2\}$
- $\delta(q_2, 0) = \emptyset$
Nondeterminism

Deterministic Computation

accept or reject

Nondeterministic Computation

• parallel computation
• tree of possible computations
• guessing and verifying the “right” choice

Ways to think about nondeterminism

accept
reject

Sofya Raskhodnikova; based on slides by Nick Hopper
NFAs ARE SIMPLER THAN DFAs

A DFA that recognizes the language \{1\}:

\[
\begin{array}{c}
\text{state 1} \\
\text{state 2} \\
\text{state 3} \\
\text{state 4}
\end{array}
\]

An NFA that recognizes the language \{1\}:
Theorem. Every DFA for language \{1\} must have at least 3 states.

Proof:
Theorem. Every NFA has an equivalent DFA.

Corollary: A language is regular iff it is recognized by an NFA.
NFA to DFA Conversion

Input: \(N = (Q, \Sigma, \delta, q_0, F) \)

Output: \(M = (Q', \Sigma, \delta', q_0', F') \)

Intuition: Do the computation in parallel, maintaining the set of states where all threads are.

Idea:
\[Q' = P(Q) \]
NFA to DFA Conversion

Input: \(N = (Q, \Sigma, \delta, q_0, F) \)

Output: \(M = (Q', \Sigma, \delta', q_0', F') \)

\[Q' = P(Q) \]
\[\delta' : Q' \times \Sigma \rightarrow Q' \]
\[\delta'(R, \sigma) = \text{for all } R \subseteq Q \text{ and } \sigma \in \Sigma. \]

\[q_0' = \]
\[F' = \]
Example: NFA to DFA

1)

\[
\begin{align*}
& a \\
\rightarrow & 1 \\
\rightarrow & b
\end{align*}
\]
Examples NFA to DFA

2)

Diagram:

- States: 1, 2, 3
- Transitions:
 - 1 to 2 on ε
 - 2 to 3 on 0
 - 2 to 1 on 1

Note: The diagram is a visual representation of a non-deterministic finite automaton (NFA) and its deterministic finite automaton (DFA) equivalent.
NFA to DFA Conversion

Input: \(N = (Q, \Sigma, \delta, q_0, F) \)
Output: \(M = (Q', \Sigma, \delta', q_0', F') \)

For \(R \subseteq Q \), let \(E(R) \) be the set of states reachable by \(\varepsilon \)-transitions from the states in \(R \).

\[Q' = P(Q) \]
\[\delta' : Q' \times \Sigma \rightarrow Q' \]
\[\delta'(R, \sigma) = \bigcup_{r \in R} (\delta(r, \sigma)) \quad \text{for all } R \subseteq Q \text{ and } \sigma \in \Sigma. \]
\[q_0' = \{ \{q_0\} \} \]
\[F' = \{ R \in Q' \mid R \text{ contains some accept state of } N \} \]
Complement: \(\overline{A} = \{ w \mid w \notin A \} \)

Union: \(A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \)

Intersection: \(A \cap B = \{ w \mid w \in A \text{ and } w \in B \} \)

Reverse: \(A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A \} \)

Concatenation: \(A \circ B = \{ vw \mid v \in A \text{ and } w \in B \} \)

Star: \(A^* = \{ w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \} \)
THEOREM. The class of regular languages is **closed** under all 6 operations.

If A and B are regular, applying any of these operation yields a regular language.
Palindromes

A palindrome is a word or a phrase that reads the same forward and backward.

Examples

• mom
• madam
• Never odd or even.
• Stressed? No tips? Spit on desserts!
Exercise

Let L be the set of words in English. Then $L \cap L^R$ is

A. The set of English words in alphabetical order, followed by the same words in reverse alphabetical order.

B. $\{w \mid w$ is an English word or an English word written backwards$\}$.

C. $\{w \mid w$ is an English word that is a palindrome$\}$.

D. None of the above.
Theorem. The reverse of a regular language is also regular.

Proof: Let L be a regular language and M be a DFA that recognizes it. Construct an NFA M' recognizing L^R:

- Define M' as M with the arrows reversed.
- Make the start state of M be the accept state in M'.
- Make a new start state that goes to all accept states of M by ε-transitions.
New construction for $A \cup B$

Construct an NFA M:

$L(M_A) = A$

$L(M_B) = B$
Concatenation operation

Concatenation: \(A \circ B = \{ vw \mid v \in A \text{ and } w \in B \}\)

Theorem. If \(A\) and \(B\) are regular, \(A \circ B\) is also regular.

Proof: Given DFAs \(M_1\) and \(M_2\), construct NFA by connecting all accept states in \(M_1\) to the start state in \(M_2\).
Concatenation operation

Concatenation: \(A \circ B = \{ vw \mid v \in A \text{ and } w \in B \} \)

Theorem. If \(A \) and \(B \) are regular, \(A \circ B \) is also regular.

Proof: Given DFAs \(M_1 \) and \(M_2 \), construct NFA by connecting all accept states in \(M_1 \) to the start state in \(M_2 \).

- Make all states in \(M_1 \) non-accepting.

\[L(M_1) = A \]
\[L(M_2) = B \]
Star operation

Star: $A^* = \{ w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \}$

Theorem. If A is regular, A^* is also regular.
The class of regular languages is closed under

Regular operations

Union: \(A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \)

Concatenation: \(A \circ B = \{ vw \mid v \in A \text{ and } w \in B \} \)

Star: \(A^* = \{ w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \} \)

Other operations

Complement: \(\overline{A} = \{ w \mid w \notin A \} \)

Intersection: \(A \cap B = \{ w \mid w \in A \text{ and } w \in B \} \)

Reverse: \(A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A \} \)