Intro to Theory of Computation

Lecture 4

Last time:
• Equivalence of NFAs and DFAs
• Closure properties of regular languages

Today:
• Finish closure properties
• Equivalence of NFAs, DFAs and regular expressions

Sofya Raskhodnikova; based on slides by Nick Hopper
Regular Operations on languages

Complement: $\overline{A} = \{ w \mid w \not\in A \}$

Union: $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$

Intersection: $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$

Reverse: $A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A \}$

Concatenation: $A \circ B = \{ vw \mid v \in A \text{ and } w \in B \}$

Star: $A^* = \{ w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \}$
THEOREM. The class of regular languages is **closed** under all 6 operations.

If A and B are regular, applying any of these operation yields a regular language.
Concatenation operation

Concatenation: $A \circ B = \{ \vw \mid v \in A \text{ and } w \in B \}$

Theorem. If A and B are regular, $A \circ B$ is also regular.

Proof: Given DFAs M_1 and M_2, construct NFA by connecting all accept states in M_1 to the start state in M_2.

![Diagram showing concatenation of two DFAs](image)
Concatenation operation

Concatenation: \(A \circ B = \{ vw \mid v \in A \text{ and } w \in B \} \)

Theorem. If \(A \) and \(B \) are regular, \(A \circ B \) is also regular.

Proof: Given DFAs \(M_1 \) and \(M_2 \), construct NFA by connecting all accept states in \(M_1 \) to the start state in \(M_2 \).
- Make all states in \(M_1 \) non-accepting.

\[L(M_1) = A \quad \text{and} \quad L(M_2) = B \]
Star operation

Star: $A^* = \{ w_1 \ldots w_k | k \geq 0 \text{ and each } w_i \in A \}$

Theorem. If A is regular, A^* is also regular.
The class of regular languages is closed under

Regular operations

Union: \(A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \)

Concatenation: \(A \circ B = \{ vw \mid v \in A \text{ and } w \in B \} \)

Star: \(A^* = \{ w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \} \)

Other operations

Complement: \(\overline{A} = \{ w \mid w \notin A \} \)

Intersection: \(A \cap B = \{ w \mid w \in A \text{ and } w \in B \} \)

Reverse: \(A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A \} \)
In a regular expression, we can use
- **Constants**: ε, \emptyset, a set Σ, members of Σ.
- **Regular operations**: \ast, \circ, \cup

Examples:
- 0^*1^* = \{ w | w has a run of 0s followed by a run of 1s\}
- $(0 \cup 1)^*$ = the set of all strings over the alphabet $\Sigma=\{0,1\}$
- $0^*1^* (\varepsilon \cup 0)$

$L(R) = \text{the language regular expression } R \text{ describes}$
Precedence

EXAMPLE

\[R_1 \ast R_2 \cup R_3 = ((R_1 \ast) R_2) \cup R_3 \]
Regular expressions: examples

1) \{ w \mid w \text{ has exactly one character } 1 \} \\
\qquad 0^*10^*

2) \{ w \mid w \text{ has length } \geq 3 \text{ and its 3rd symbol is } 0 \} \\
\qquad (0 \cup 1)(0 \cup 1) \ 0 \ (0 \cup 1)^*

3) \{ w \mid \text{every odd position of } w \text{ is a } 1 \} \\
\qquad (1(0 \cup 1))^* \ (\varepsilon \cup 1)
Theorem. Every regular expression has an equivalent NFA.

Proof: Induction on the length of regular expression R.

Base case: length 1

\[R = \varepsilon \]

\[R = \emptyset \]

\[R = \sigma \]

Inductive step: follows from closure of the class of regular languages under the regular operations.
Exercise

What should the induction hypothesis be?

A. Suppose some regular expression of length k can be converted an NFA, for some $k \in \mathbb{N}$.

B. Suppose all regular expressions of length k can be converted an NFA, for some $k \in \mathbb{N}$.

C. Suppose all regular expressions of length at most k can be converted an NFA, for some $k \in \mathbb{N}$.

D. None of the above.
Transform $(1(0 \cup 1))^*$ to an NFA
Theorem. Every NFA has an equivalent regular expression.

Proof idea:
Transform NFA to a regular expression by removing states and relabeling the arrows with regular expressions.
What is the regular expression that generates all strings that take this machine from q_s to q_a?

A. $ab^*c \cup d$
B. $ab^*c \cap d$
C. $abc \cup d$
D. $(ab^*cd)^*$
E. None of the above.
Generalized NFAs

- Each transition is labeled with a regular expression
- Unique and distinct start and accept states
- No transitions to the start state
- No transitions from the accept state
Generalized NFAs

\[R(q_s, q) = a \cup b \]
\[R(q, q_s) = \emptyset \]
\[R(q, q_a) = \Omega \]

G accepts w if it finds \(q_0 q_1 \ldots q_k, w_1 \ldots w_k \):
- \(w_i \) is generated by \(R(q_{i-1}, q_i) \)
- \(w = w_1 w_2 \ldots w_k \)
- \(R(q_{q_k}, q) = \emptyset \)
- \(q_0 = q_s, q_k = q_a \)
Add a new start state with no incoming arrows. Make a unique accept state with no outgoing arrows.
While machine has more than 2 states:

Pick an internal state, **rip it out and relabel the arrows** with regular expressions to account for the missing state.