Lecture 4

Last time:
• Equivalence of NFAs and DFAs
• Closure properties of regular languages

Today:
• Finish closure properties
• Equivalence of NFAs, DFAs and regular expressions

Sofya Raskhodnikova

Sofya Raskhodnikova; based on slides by Nick Hopper
Complement: \(\overline{A} = \{ w \mid w \not\in A \} \)

Union: \(A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \)

Intersection: \(A \cap B = \{ w \mid w \in A \text{ and } w \in B \} \)

Reverse: \(A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A \} \)

Concatenation: \(A \circ B = \{ vw \mid v \in A \text{ and } w \in B \} \)

Star: \(A^* = \{ w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \} \)
THEOREM. The class of regular languages is closed under all 6 operations.

If A and B are regular, applying any of these operation yields a regular language.
Star: $A^* = \{ w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \}$

Theorem. If A is regular, A^* is also regular.
The class of regular languages is closed under

Regular operations

Union: \(A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \)
Concatenation: \(A \circ B = \{ vw \mid v \in A \text{ and } w \in B \} \)
Star: \(A^* = \{ w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \} \)

Other operations

Complement: \(\overline{A} = \{ w \mid w \not\in A \} \)
Intersection: \(A \cap B = \{ w \mid w \in A \text{ and } w \in B \} \)
Reverse: \(A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A \} \)
Regular expressions

• In a regular expression, we can use
 – **Constants**: \(\varepsilon \), \(\emptyset \), a set \(\Sigma \), members of \(\Sigma \).
 – **Regular operations**: \(* \), \(\circ \), \(\cup \)

• **Examples**:
 – \(0^*1^* = \{ w \mid w \text{ has a run of 0s followed by a run of 1s} \} \)
 – \((0 \cup 1)^* = \text{the set of all strings over the alphabet } \Sigma = \{0,1\} \)
 – \(0^*1^*(\varepsilon \cup 0) \)

• \(L(R) = \text{the language regular expression } R \text{ describes} \)
Precedence

EXAMPLE

\[R_1 R_2^* \cup R_3 R_4 = (R_1(R_2^*)) \cup (R_3 R_4) \]
Regular expressions: examples

1) \{ w \mid w \text{ has exactly one character } 1, \text{ any } \# \text{ of } 0\text{s}\} \\
 0^*10^*$

2) \{ w \mid w \text{ has length } \geq 3 \text{ and its 3rd symbol is } 0 \} \\
 (0 \cup 1)(0 \cup 1) \ 0 \ (0 \cup 1)^*$

3) \{ w \mid \text{ every odd position of } w \text{ is a } 1 \} \\
 (1(0 \cup 1))^* \ (\varepsilon \cup 1)
Theorem. Every regular expression has an equivalent NFA.

Proof: Induction on the length of regular expression R.

Base case: length 1

\[
R = \varepsilon \\
R = \emptyset \\
R = \sigma
\]

Inductive step: follows from closure of the class of regular languages under the regular operations.
Exercise

What should the induction hypothesis be?

A. Suppose some regular expression of length k can be converted an NFA, for some $k \in \mathbb{N}$.

B. Suppose each regular expression of length k can be converted an NFA, for some $k \in \mathbb{N}$.

C. Suppose each regular expression of length at most k can be converted an NFA, for some $k \in \mathbb{N}$.

D. None of the above.
Transform \((1(0 \cup 1))^*\) to an NFA
Theorem. Every NFA has an equivalent regular expression.

Proof idea:
Transform NFA to a regular expression by removing states and relabeling the arrows with regular expressions.
Exercise

What is the regular expression that generates all strings that take this machine from q_s to q_a?

A. $ab^*c \cup d$
B. $ab^*c \cap d$
C. $abc \cup d$
D. $(ab^*cd)^*$
E. None of the above.
Generalized NFAs

- Each transition is labeled with a regular expression
- Unique and distinct start and accept states
- No transitions to the start state
- No transitions from the accept state
Generalized NFAs

G accepts w if $\exists q_0, q_1, \ldots, q_k, w_1, \ldots, w_k$:

$R(q_s, q_0) = a^*b, q_1, \ldots, q_k, w_1, \ldots, w_k$

w_i is generated by $R(q_{i-1}, q_i)$

$R(q, a) = \emptyset$

$w = w_1w_2\ldots w_k$

$R(q, q_1) \subseteq q \cup \emptyset q_k = q_a$
Add a new start state with no incoming arrows. Make a unique accept state with no outgoing arrows.
While machine has more than 2 states:

Pick an internal state, *rip it out and relabel the arrows* with regular expressions to account for the missing state.
R(q_0, q_3) = (a*b)(a \cup b)^*
\[bb \cup (abb \ ba) b^* a = R(q_1, q_1) \]
\[bb \cup (a \cup ba)b^*a = R(q_1, q_1) \]

\[b \cup (a \cup ba)b^* = R(q_1, q_a) \]

\[(bb \cup (a \cup ba)b^*a)^*(b \cup (a \cup ba)b^*) \]
Conversion procedures

DFA ↔ NFA

Regular Language ↔ Regular Expression

definition
Design an NFA for the language:

\{0^n1^n \mid 0 < n \leq 2\}

\{0^n1^n \mid 0 < n \leq k\}

\{0^n1^n \mid n > 0\}?

(For R a regexp, \(R^2\) means RR, and \(R^n\) means RR...R)