Lecture 4

Last time:
• Equivalence of NFAs and DFAs
• Closure properties of regular languages

Today:
• Finish closure properties
• Equivalence of NFAs, DFAs and regular expressions

Sofya Raskhodnikova; based on slides by Nick Hopper
Operations on languages

Complement: $\overline{A} = \{ w \mid w \notin A \}$

Union: $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$

Intersection: $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$

Reverse: $A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A \}$

Concatenation: $A \circ B = \{ vw \mid v \in A \text{ and } w \in B \}$

Star: $A^* = \{ w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \}$
THEOREM. The class of regular languages is **closed** under all 6 operations.

If A and B are regular, applying any of these operation yields a regular language.
Star operation

Star: $A^* = \{ w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \}$

Theorem. If A is regular, A^* is also regular.
The class of regular languages is closed under

Regular operations

Union: $A \cup B = \{ w | w \in A \text{ or } w \in B \}$

Concatenation: $A \circ B = \{ vw | v \in A \text{ and } w \in B \}$

Star: $A^* = \{ w_1 \ldots w_k | k \geq 0 \text{ and each } w_i \in A \}$

Other operations

Complement: $\neg A = \{ w | w \notin A \}$

Intersection: $A \cap B = \{ w | w \in A \text{ and } w \in B \}$

Reverse: $A^R = \{ w_1 \ldots w_k | w_k \ldots w_1 \in A \}$
Regular expressions

• In a regular expression, we can use
 – **Constants:** \(\varepsilon \), \(\emptyset \), a set \(\Sigma \), members of \(\Sigma \).
 – **Regular operations:** *, \(\circ \), \(\cup \)

• **Examples:**
 – \(0^*1^* \) = \{ \(w \mid w \) has a run of 0s followed by a run of 1s\}
 – \((0 \cup 1)^* \) = the set of all strings over the alphabet \(\Sigma=\{0,1\} \)
 – \(0^*1^*(\varepsilon \cup 0) \)

• **L(\(R\)) =** the language regular expression \(R \) describes
Precedence

EXAMPLE

\[R_1R_2^* \cup R_3R_4 = (R_1(R_2^*)) \cup (R_3R_4) \]
1) \{ w \mid w \text{ has exactly one character 1, any } \# \text{ of 0s} \}
 0^*10^*

2) \{ w \mid w \text{ has length } \geq 3 \text{ and its 3rd symbol is 0} \}
 \[(0 \cup 1)(0 \cup 1) \ 0 (0 \cup 1)^*\]

3) \{ w \mid \text{every odd position of } w \text{ is a 1} \}
 \[(1(0 \cup 1))^* (\varepsilon \cup 1)\]
Theorem. Every regular expression has an equivalent NFA.

Proof: Induction on the length of regular expression R.

Base case: length 1

- $R = \varepsilon$
- $R = \emptyset$
- $R = \sigma$

Inductive step: follows from closure of the class of regular languages under the regular operations.
Exercise

What should the induction hypothesis be?

A. Suppose some regular expression of length k can be converted an NFA, for some $k \in \mathbb{N}$.

B. Suppose each regular expression of length k can be converted an NFA, for some $k \in \mathbb{N}$.

C. Suppose each regular expression of length at most k can be converted an NFA, for some $k \in \mathbb{N}$.

D. None of the above.
Regular expression to NFA

Transform \((1(0 \cup 1))^*\) to an NFA

Diagram:

- Start state
- Transition on \(\varepsilon\) to state 1
- Transition on 1 to state 1,0
- Transition on \(\varepsilon\) back to start state
Theorem. Every NFA has an equivalent regular expression.

Proof idea:
Transform NFA to a regular expression by removing states and relabeling the arrows with regular expressions.
What is the regular expression that generates all strings that take this machine from q_s to q_a?

A. $ab^*c \cup d$
B. $ab^*c \cap d$
C. $abc \cup d$
D. $(ab^*cd)^*$
E. None of the above.
Generalized NFAs

• Each transition is labeled with a regular expression
• Unique and distinct start and accept states
• No transitions to the start state
• No transitions from the accept state
A GNFA accepts \(w\) if \(\exists q_0, q_1, \ldots, q_k, w_1, \ldots, w_k: w_i\text{ is generated by } R(q_{i-1}, q_i)\),
\[R(q_s, q) = a^*b, \quad w = w_1w_2\ldots w_k\]
\[R(q_{i-1}, q_i) = \emptyset, \quad q_k = q_a\]
NFA to GNFA

Add a new start state with no incoming arrows.
Make a unique accept state with no outgoing arrows.
While machine has more than 2 states:

Pick an internal state, rip it out and relabel the arrows with regular expressions to account for the missing state.
$R(q_0, q_3) = (a^*b)(a \cup b)^*$
$bb \cup (abb \ ba)b^*a = R(q_1,q_1)$
$bb \cup (a \cup ba)b^*a = R(q_1, q_1)$

$\epsilon \rightarrow q_1 \\
q_s \\

b \cup (a \cup ba)b^* = R(q_1, q_a)$

$(bb \cup (a \cup ba)b^*)^*(b \cup (a \cup ba)b^*)$
Conversion procedures

DFA ↔ NFA

definition

Regular Language ↔ Regular Expression