Last time:
- Closure properties.
- Equivalence of NFAs, DFAs and regular expressions

Today:
- Conversion from NFAs to regular expressions
- Proving that a language is not regular: pumping lemma
Theorem. Every NFA has an equivalent regular expression.

Proof idea:
Transform NFA to a regular expression by removing states and relabeling the arrows with regular expressions.
Generalized NFAs

- Each transition is labeled with a regular expression
- Unique and distinct start and accept states
- No transitions to the start state
- No transitions from the accept state
Generalized NFAs

G accepts w if it finds $q_0, q_1, \ldots, q_k, w_1, \ldots, w_k$:

- $R(q_s, q) = a^*b$
- $R(q_s, q) = \emptyset$
- $R(q, a) = \emptyset$
- $w = w_1w_2\ldots w_k$
- $R(q_s, q_a) \neq \emptyset$
- $q_k = q_a$
NFA to GNFA

Add a new start state with no incoming arrows. Make a unique accept state with no outgoing arrows.
While machine has more than 2 states:
Pick an internal state, **rip it out and relabel the arrows** with regular expressions to account for the missing state.
$R(q_0, q_3) = (a^*b)(a \cup b)^*$
bb \cup (abb \ ba)b^*a = R(q_1, q_1)
$bb \cup (a \cup ba)b^*a = R(q_1, q_1)$

$R(q_1, q_1) = R(q_1, q_a)$
Add q_{start} and q_{accept} to create GNFA G.

Run $\text{CONVERT}(G)$

$\text{CONVERT}(G)$:

If $\#\text{states} \geq 2$

return the expression on the arrow going from q_{start} to q_{accept}
NFA to regular expression

Add q_{start} and q_{accept} to create GNFA G.

Run CONVERT(G)

CONVERT(G):
If $\#\text{states} > 2$

Build G' from G:
select $q_{\text{rip}} \in Q$ different from q_{start} and q_{accept}
define $Q' = Q - \{q_{\text{rip}}\}$
define R' as:
\[R'(q_i, q_j) = R(q_i, q_{\text{rip}})R(q_{\text{rip}}, q_{\text{rip}})^*R(q_{\text{rip}}, q_j) \cup R(q_i, q_j) \]
return CONVERT(G')
Conversion procedures

DFA ↔ NFA

-definition-

Regular Language

Regular Expression

Sofya Raskhodnikova; based on slides by Nick Hopper
Design an NFA for the language:

\[\{0^n1^n \mid 0 < n \leq 2\} \]

\[\{0^n1^n \mid 0 < n \leq k\} \]

\[\{0^n1^n \mid n > 0\}? \]

(For R a regexp, \(R^2 \) means RR, and \(R^n \) means RR...R)
B = \{0^n1^n | n \geq 0\} is NOT regular!
Proof (by contradiction)

Let M be a k-state DFA that recognizes B.

Consider the path M takes on 0^k1^k:

$q_0q_1q_2\ldots q_iq_{i+1} q_j q_k \ldots q_{2k} \in F$

$0000\ldots00..0..011111\ldots11$

There must be $i < j \leq k$ such that $q_i = q_j$

M accepts $0^{k-(j-i)}1^k \notin B!$

So M does not recognize the language B.
REGULAR OR NOT?

\[C = \{ w \mid w \text{ has equal number of 1s and 0s} \} \]

NOT REGULAR

\[D = \{ w \mid w \text{ has equal number of occurrences of 01 and 10} \} \]

\[(0^*0) \cup (1^*1) \cup 1 \cup 0 \cup \epsilon\]
Let L be a regular language with $|L| = \infty$

Then there exists a length p such that

if $w \in L$ and $|w| \geq p$ then

w can be split into three parts $w=xyz$ where:

1. $|y| > 0$
2. $|xy| \leq p$
3. $xy^iz \in L$ for all $i \geq 0$
THE PUMPING LEMMA

Example:
Let \(L = 0^*1^* \); \(p = 1 \)
\(w = 011 \)
\(x = \varepsilon \)
\(y = 0 \)
\(z = 11 \)
if \(w \in L \) and \(|w| \geq p \)
then \(w = xyz \), where:

1. \(|y| > 0 \)

Let \(L = (0 \cup 1)2^* \); \(p = 2 \)
\(w = 12 \)
\(x = 1 \)
\(y = 2 \)
\(z = \varepsilon \)

2. \(|xy| \leq p \)

3. \(xy^iz \in L \) for all \(i \geq 0 \)
Let M be a DFA that recognizes L.
Let p be the number of states in M.
Assume $w \in L$ is such that $|w| \geq p$.

We show $w = xyz$

1. $|y| > 0$
2. $|xy| \leq p$
3. $xy^iz \in L$ for all $i \geq 0$

There must be $j > i$ such that $q_i = q_j$.
Use the pumping lemma to prove that

\[B = \{0^n1^n \mid n \geq 0\} \] is not regular

Hint: Assume \(B \) is regular. Let \(p \) be the pumping length.

Try pumping \(w = 0^p1^p \).

If \(B \) is regular, \(w \) can be split into \(w = xyz \),
where

1. \(|y| > 0\)
2. \(|xy| \leq p\)
3. \(xy^iz \in B \) for all \(i \geq 0 \)

\(y \) is all 0s: \(xyyyz \) has more 0s than 1s

Contradiction!
GENERAL STRATEGY

Proof by contradiction: assume L is regular.

Then there is a pumping length p.

Find a string $w \in L$ with $|w| \geq p$.

Show that no matter how you choose xyz, w cannot be pumped!

Conclude that L is not regular.
PALINDROMES = \{ \text{ww}^R \mid w \in \{0,1\}^* \} \text{ is not regular.}

Proof: Assume … pumping length \(p \)

Find a \(w \in \text{PALINDROMES} \) longer than \(p \)

\(0^p1^p1^p0^p \)

Show that \(w \) cannot be pumped:

\[
\begin{align*}
\text{w} &= 00\ldots0011\ldots1100\ldots00 \\
\text{x} &\geq p \\
\text{y} &\geq 2p \\
\text{z} &\geq p
\end{align*}
\]

\(y \) must be in this part

\[
\text{xyyz} = 00\ldots00011\ldots1100\ldots00
\]

\[
\begin{align*}
\text{p} &\geq p \\
\text{2p} &\geq 2p \\
\text{p} &\geq p
\end{align*}
\]
PALINDROMES = \{ \text{ww}^R \mid w \in \{0,1\}^* \} \text{ is not regular.}

Proof: Assume ... pumping length p

Find a $w \in \text{PALINDROMES}$ longer than p

$0^p1^p1^p0^p$

Show that w cannot be pumped:

If $w = xyz$ with $|xy| \leq p$ then

$y = 0^J$ for some $J > 0$.

Then $xyyz = 0^{p+J}1^{2p}0^p \notin \text{PALINDROMES}$

Contradiction!
Prove $C = \{ 0^i1^j | i > j \geq 0 \}$ is not regular.

Proof: Assume ... pumping length p

Find a $w \in C$ longer than p

Show that w cannot be pumped:

$w = 00...0011...11$

$xyyz = 00...00011...11$

$xz = 0...0011...11$

y must be in this part
Prove $C = \{ 0^i1^j \mid i > j \geq 0 \}$ is not regular.

Proof: Assume ... pumping length p

Find a $w \in C$ longer than p

$0^{p+1}1^p$

If $w = xyz$ with $|xy| \geq p$ then $y = 0^J$ for some $J \geq 1$.

Then $xy^0z = xz = 0^{p+1-J}1^p \not\in C$

Contradiction!
Pumping lemma as a game

1. **YOU** pick the language L to be proved nonregular.
2. **ADVERSARY** picks p, but doesn't reveal to **YOU** what p is; **YOU** must devise a play for all possible p's.
3. **YOU** pick w, which should depend on p and which must be of length at least p.
4. **ADVERSARY** divides w into x, y, z, obeying conditions stipulated in the pumping lemma: $|y| > 0$ and $|xy| \leq p$. Again, **ADVERSARY** does not tell **YOU** what x, y, z are, although they must obey the constraints.
5. **YOU** win by picking i, which may be a function of p, x, y, z, such that xy^iz is not in L.

Sofya Raskhodnikova; based on slides by Nick Hopper