Lecture 5

Last time:
- Closure properties.
- Equivalence of NFAs, DFAs and regular expressions

Today:
- Proving that a language is not regular: pumping lemma

Sofya Raskhodnikova
Conversion procedures

DFA ↔ NFA

Regular Language ↔ Regular Expression

definition
Design an NFA for the language:

\{0^n1^n \mid 0 < n \leq 2\}

\{0^n1^n \mid 0 < n \leq k\}

\{0^n1^n \mid n > 0\}?

(For R a regexp, \(R^2\) means \(RR\), and \(R^n\) means \(RR\ldots R\))
SOME LANGUAGES ARE NOT REGULAR!

\[B = \{0^n1^n \mid n \geq 0\} \text{ is NOT regular!} \]
Proof (by contradiction)

Let M be a k-state DFA that recognizes B.

Consider the path M takes on 0^k1^k:

$q_0q_1q_2... q_iz_{i+1}q_jq_k... q_{2k} \in F$

$$0000...00..0..011111...11$$

There must be $i < j \leq k$ such that $q_i = q_j$

M accepts $0^{k-(j-i)}1^k \notin B$!

So M does not recognize the language B.
REGULAR OR NOT?

\[C = \{ w \mid w \text{ has equal number of 1s and 0s}\} \]

NOT REGULAR

\[D = \{ w \mid w \text{ has equal number of occurrences of 01 and 10}\} \]

\[(0\Sigma^*0) \cup (1\Sigma^*1) \cup 1 \cup 0 \cup \varepsilon \]
THE PUMPING LEMMA

Let L be a regular language with $|L| = \infty$

Then there exists a length p such that

if $w \in L$ and $|w| \geq p$ then

w can be split into three parts $w=xyz$ where:

1. $|y| > 0$
2. $|xy| \leq p$
3. $xy^iz \in L$ for all $i \geq 0$
THE PUMPING LEMMA

Example:

Let \(L = 0^*1^* \); \(p = 1 \)

\(w = 011 \)

\(x = \varepsilon \)

\(y = 0 \)

\(z = 11 \)

if \(w \in L \) and \(|w| \geq p \)

then \(w = xyz \), where:

1. \(|y| > 0 \)
 Let \(L = (0 \cup 1)^2^* \); \(p = 2 \)

2. \(|xy| \leq p \)
 \(w = 12 \)

3. \(xy^iz \in L \) for all \(i \geq 0 \)

\(x = 1 \)

\(y = 2 \)

\(z = \varepsilon \)
Let M be a DFA that recognizes L. Let p be the number of states in M. Assume $w \in L$ is such that $|w| \geq p$.

We show $w = xyz$

1. $|y| > 0$
2. $|xy| \leq p$
3. $xy^i z \in L$ for all $i \geq 0$

There must be $j > i$ such that $q_i = q_j$.

Proof of the pumping lemma
Use the pumping lemma to prove that $B = \{0^n1^n \mid n \geq 0\}$ is not regular.

Hint: Assume B is regular. Let p be the pumping length. Try pumping $w = 0^p1^p$.

If B is regular, w can be split into $w = xyz$, where

1. $|y| > 0$
2. $|xy| \leq p$
3. $xy^iz \in B$ for all $i \geq 0$

y is all 0s: $xyyz$ has more 0s than 1s

Contradiction!
Proof by contradiction: assume L is regular.

Then there is a pumping length p.

Find a string $w \in L$ with $|w| \geq p$.

Show that no matter how you choose xyz, w cannot be pumped!

Conclude that L is not regular.
Pumping lemma as a game

1. **YOU** pick the language L to be proved nonregular.
2. **ADVERSARY** picks p, but doesn't reveal to **YOU** what p is; **YOU** must devise a play for all possible p's.
3. **YOU** pick w, which should depend on p and which must be of length at least p.
4. **ADVERSARY** divides w into x, y, z, obeying conditions stipulated in the pumping lemma: $|y| > 0$ and $|xy| \leq p$. Again, **ADVERSARY** does not tell **YOU** what x, y, z are, although they must obey the constraints.
5. **YOU** win by picking i, which may be a function of p, x, y, z, such that xy^iz is not in L.

Sofya Raskhodnikova; based on slides by Nick Hopper
PALINDROMES = \{ \text{ww}^R | w \in \{0,1\}^* \} is not regular.

Proof: Assume … pumping length \(p \)

Find a \(w \in \text{PALINDROMES} \) longer than \(p \)

\[
0^p1^p1^p0^p
\]

Show that \(w \) cannot be pumped:

\[
w = 00\ldots0011\ldots1100\ldots00
\]

\(y \) must be in this part

\[
xyyz = 00\ldots00011\ldots1100\ldots00
\]

\[
> p \quad 2p \quad p
\]
PALINDROMES = \{ w w^R \mid w \in \{0,1\}^* \} is not regular.

Proof: Assume … pumping length p
Find a \(w \in \text{PALINDROMES} \) longer than p
\[0^p 1^p 1^p 0^p \]

Show that w cannot be pumped:

If \(w = xyz \) with \(|xy| \leq p \) then
\(y = 0^J \) for some \(J > 0 \).
Then \(xyyz = 0^{p+J} 1^2 0^p \not\in \text{PALINDROMES} \)

Contradiction!
Exercise

Prove $C = \{ 0^i1^j \mid i > j \geq 0 \}$ is not regular.

Proof: Assume ... pumping length p

What string can you choose in your next move?

A. 00011
B. 0^p1^p
C. $0^{p/2}1^{p/2-1}$
D. $0^{p+1}1^p$
E. $0^{p+2}1^p$
F. More than one choice above works.
Prove \(C = \{ 0^i1^j \mid i > j \geq 0 \} \) is not regular.

Proof: Assume \(\ldots \) pumping length \(p \)

Find a \(w \in C \) of length at least \(p \)

\[w = 0^p1^p \]

Show that \(w \) cannot be pumped:

\[w = 00\ldots0011\ldots11 \]

\(y \) must be in this part

\[xyyz = 00\ldots00011\ldots11 \quad xz = 0\ldots0011\ldots11 \]

> \(p+1 \)

\(\leq p \)
Prove $C = \{ 0^i1^j \mid i > j \geq 0 \}$ is not regular.
Proof: Assume ... pumping length p
Find a $w \in C$ of length at least p
$0^{p+1}1^p$

If $w = xyz$ with $|xy| \geq p$ then $y = 0^j$ for some $J \geq 1$.
Then $xy^0z = xz = 0^{p+1-J}1^p \notin C$

Contradiction!
Let $\text{BALANCED} = \{ w \mid w \text{ has an equal # of } 1\text{s and } 0\text{s} \}$

Assume ... there is a p

Find a $w \in \text{BALANCED}$ of length at least p

$(01)^p$ \text{\sout{}} 0^p1^p

Show that w cannot be pumped:

If $w = xyz$ with $|xy| \leq p$ then $y = 0^j$ for some $J > 0$.

Then $xyyzz = 0^{p+j}1^p \notin \text{BALANCED}$
Pumping a language can be lots of work…
Let’s try to reuse that work!

\[\{0^n1^n \mid n \geq 0\} = \text{BALANCED} \cap 0^*1^* \]

If BALANCED is regular then so is \(\{0^n1^n \mid n \geq 0\} \)
Prove: A is not regular

any of \{\circ, \cup, \cap\} or, for one language, \{\neg, R, *\}

If A is regular, then A \cap C (= B) is regular.

But B is not regular so neither is A.
Prove $A = \{0^i1^j \mid i \neq j\}$ is not regular using $B = \{0^n1^n \mid n \geq 0\}$

$\neg A = B \cup \{\text{strings that mix 0s and 1s}\}$

$\neg A \cap 0^*1^* = B$