Intro to Theory of Computation

L ECTURE 6

Last time:

* Pumping lemma

* Proving a language Is not regular
Today:

 Pushdown automata (PDAS)

» Context-free grammars (CFGS)

On Friday: Homework 2 due
Homework 3 out

Sofya Raskhodnikova

9/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper 6.1

3%% CS332 so far

MODEL OF A PROBLEM: LANGUAGE
MODEL OF A PROGRAM: DFA
EQUIVALENT MODELS: NFA, REGEXP

PROBLEMS THAT A DFA CAN'T SOLVE

ARE WE DONE?

9/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper 6.2

229 | NONE OF THESE ARE REGULAR

2 ={0,1},L={0"1"|n=0}
> ={a,b,c,....,z},L={w|w=wR}

2 ={(,) }, L={ balanced strings of parens }

We can write a C or JAVA program for any of them!

9/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper 6.3

299 PUSHDOWN AUTOMATA (PDA)

FINITE INPUT
STATE

STACK

(Last In,

first out)

9/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper 6.4

string pop push

A~y

ee—% T Y 0e—o0
A e’ 4 .

ll,O—H:
@LO:) 10—

| STACK |

string pop push

PDA to recognize L={0"1"|n20}

aa9 | Formal Definition
APDAIsa6-tuple P=(Q, X, I 6, q,, F)
Q 1s a finite set of states
2. IS the alphabet

I' Is the stack alphabet

0:QxZ xI,— P(QxT),) is the transition function
0, € Q Is the start state

F < Q Is the set of accept states
2. =2 U{g}and P(Q xTI,)is the set of subsets of Q xI',

Note: A PDA Is defined to be nondeterministic.

9/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper 6.7

fﬁ Formal Definition

APDAIsa6-tuple P=(Q, X, I 6, q,, F)
Q 1s a finite set of states
2. IS the alphabet
I' Is the stack alphabet

0:QxZ xI,— P(QxT),) is the transition function
0, € Q Is the start state

F < Q Is the set of accept states

A PDA starts with an empty stack.

It accepts a string if at least one of its computational branches
reads all the input and gets into an accept state at the end of it.

9/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper 6.8

o3
229 An example PDA

~©Q==@>

l1,0—>£
£$ —>¢
@@

Q =1{do, d1, dy, 43} 2 ={0,1} = {$,0}
0:QxxZ. xIN—->PQxTI))

6(d4,1,0) = { (9..€) } 0(0,,1,1) = &

3%52 PDA: algorithmic description

0.0

1. Place the marker
symbol $ onto the stack. ll,o — €

2. Keep reading a 0 and £$ g
pushing it onto the 4—) 10—¢
stack. If you read a 1,
pop a 0 and go to the next step.

3. Nondeterministically keep reading a 1 and popping a
0 or go to the next step.

4. 1f the top of the stack Is $, enter the accept state.
(Then PDA accepts If the input has been read).

2339 Exercise

What strings are accepted by this PDA?

2={a,b,c,..., R
B O L OB

l£,£—> €
A. Only & ‘ £$ ¢ ‘
_ @ — D 0,0 — &
B. Palindromes

C. Even-length palindromes

D. All strings that start and end with the same letter
E. None of the above

() Give an ALGORITHMIC

332 description
2={a, b,c,
—» ﬂ»‘:) G.€—0C
1. Place the marker
symbol $ onto the stack. g £ ¢

2. Nondeterministically
keep reading a "$—"":>GG_)£
character and
pushing it onto the stack or go to the next step.

3. Nondeterministically keep reading and popping a
matching character or go to the next step.

4. 1f the top of the stack Is $, enter the accept state.

Build a PDA to recognize
L ={abick|i,jk20and (i=jori=k)}

ba—>£ C,€E — &

m
—> ‘ £$—¢

b, > € ca— ¢

GO

aam | CONTEXT-FREE GRAMMARS (CEG
332 (CFGs)

start variable
/]
A
A =
) B \
variables ~

terminals

A = 0Al = 00A1l = 00B11 = 00#11

production
rules

9/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper 6.15

CS
33 VALLEY GIRL GRAMMAR

<PHRASE> — <FILLER><PHRASE>
<PHRASE> — <START><END>
<FILLER> — LIKE

<FILLER> — UMM

<START> — YOU KNOW

<START> — ¢

<END> — GAG ME WITH A SPOON
<END> — AS IF

<END> — WHATEVER

<END> — LOSER

9/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper 6.16

G
339| VALLEY GIRL GRAMMAR

<PHRASE> — <FILLER><PHRASE> | <START><END>

<FILLER> — LIKE | UMM

<START> — YOU KNOW | €

<END> — GAG ME WITH A SPOON | AS IF | WHATEVER | LOSER

9/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L7.17

g‘% Formal Definition

ACFGisad-tupleG=(V, 2, R, S)
V/ Is a finite set of variables
2. 1s a finite set of terminals (disjoint from V)

R 1s set of production rules of the form A — W,
where A e Vand W e (VUX)*

S € VIs the start variable
L(G) Is the set of strings generated by G

A language Is context-free
If It Is generated by some CFG.

9/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L7.18

g‘% Formal Definition

ACFGisad-tupleG=(V, 2, R, S)
V/ Is a finite set of variables
2. 1s a finite set of terminals (disjoint from V)

R 1s set of production rules of the form A — W,
where A e Vand W e (VUX)*

S e V Is the start variable

Example: G={{S}, {0,1}, R, S} R={S—0S1,S—> ¢}
L(G)={0"1"|n=0}

9/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L7.19

3@;‘% CFG terminology

| production
start variable rules
variables ‘ _
terminals
A ={0Al = 00A1ll O00B1l1 = 00#11
uVw yields uvw if (V —>v) € R. A derives 00#11 in 4 steps.

9/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L.7.20

PALINDROMES

S >ocSocforallc e 2
S — ¢

///////// Sofya Raskhodnikova; based on slides by Nick Hopper L7.21

(8
229 Example

GIVE A CFG FOR THE EMPTY SET
G={{S}, 2,4, S}

///////// Sofya Raskhodnikova; based on slides by Nick Hopper L7.22

3:32 GIVE ACFG FOR...

L, = { strings of balanced parens }

L, ={abick|i,j,k=0and (i=jorj=k)}

9/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L7.23

gﬁ CFGs In the real world

The syntactic grammar for the Java programming language

BasicForStatement:
for (; ;) Statement
for (; ; ForUpdate) Statement
for (; Expression ;) Statement
for (; Expression ; ForUpdate) Statement
for (Forlnit ; ;) Statement
for (Forlnit ; ; ForUpdate) Statement
for (Forlnit ; Expression ;) Statement
for (Forlnit ; Expression ; ForUpdate) Statement

9/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L7.24

G
33

COMPILER MODULES

LEXER

PARSER

SEMANTIC ANALYZER

TRANSLATOR/INTERPRETER

9/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L7.25

63 Parse trees

11

///////// Sofya Raskhodnikova; based on slides by Nick Hopper L7.26

63 Equivalence of CFGs & PDAS
339 1

A language is generated by a CFG
S
It is recognized by a PDA

9/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L7.27

