
Sofya Raskhodnikova

Intro to Theory of Computation

LECTURE 8
Last time:

• Pumping lemma for CFLs

• Proving that a language is not CF

Today:

• Equivalence of CFGs and PDAs

• Turing Machines

9/27/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L8.1

9/27/2018 Sofya Raskhodnikova; based on slides by Nick Hopper

Read on your own

1. Ambiguous CFGs.

2. Chomsky normal form for CFGs

3. (Skipping Chapter 2.4 in Sipser).

L1.2

ε,ε → $
0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

string pop push

The language of P is the set of strings it accepts.

PDAs are nondeterministic.

PDAs: reminder

9/27/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L8.3

Exercise

When PDA takes a nondeterministic step, what

happens to the stack?

A. First 0 is pushed onto the stack, then 1.

B. First 1 is pushed onto the stack, then 0.

C. Now PDA has access to two stacks and it pushes 0
onto one and 1 onto the other.

D. Two different computational branches are available to
the PDA: it pushes exactly one symbol (0 or 1) onto
the stack on each branch.

E. None of the above

1,ε → 0

q0

q1

q2

1,ε → 1

L3.4

A language is generated by a CFG



It is recognized by a PDA

Equivalence of CFGs & PDAs

9/27/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L8.5

Suppose L is generated by a CFG G = (V, Σ, R, S).

Construct a PDA P = (Q, Σ, Γ, , q, F)

that recognizes L.

Idea: P will guess steps of a derivation of its input w

and use its stack to derive it.

9/27/2018

Converting a CFG to a PDA

Sofya Raskhodnikova; based on slides by Nick Hopper L8.6

(1) Place the marker symbol $ and the start

variable on the stack.

(2) Repeat forever:

(a) If a variable A is on top of the stack,

and (A → s) ∈ R,

pop A and

push string s on the stack

(b) If a terminal is on top of the stack,

pop it and match it with input.

(3) On (ε,$), accept.

9/27/2018

Algorithmic description of PDA

in reverse order.

Sofya Raskhodnikova; based on slides by Nick Hopper

Choose the rule from R
nondeterministically.

L8.7

(qstart) Push S$ and go to qloop

(qloop) Repeat the following steps forever:

(a) On (ε,A) where (A → 𝒔) ∈ R, push 𝒔𝑹 and

go to qloop

(b) On (,), pop  and go to qloop

(c) On (ε,$) go to qaccept

Otherwise, the PDA will get stuck!

9/27/2018

Designing states of PDA

Sofya Raskhodnikova; based on slides by Nick Hopper L8.8

ε,ε → S$

ε,$ → ε

ε,A → 𝒔𝑹 for each rule A → 𝒔

,  → ε for each terminal 

Designing PDA

9/27/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L8.9

S → aTb

T → Ta | ε

ε,ε → $

ε,$ → ε

ε,ε → S

ε,ε → T

ε,ε → a

ε,ε → T

ε,T → ε

a,a → ε

b,b → ε9/27/2018



A language is generated by a CFG

It is recognized by a PDA

9/27/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L8.11

Given PDA P = (Q, Σ, Γ, , q, F)

Construct a CFG G = (V, Σ, R, S) with L(G)=L(P)

First, simplify P so that:

1. It has a single accept state, qaccept

2. It empties the stack before accepting

3. Each transition does exactly one of:

• pushes a symbol;

• pops a symbol.

Converting a PDA to a CFG

9/27/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L8.12

ε,ε → $
0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

SIMPLIFY

q0 q1

q2q3

ε,ε → ε

ε,ε → ε

ε,0 → ε

ε,ε → 0

ε,ε → 0

q4

q5
9/27/2018

For each pair of states p and q in P,

add a variable Apq to CFG

that generates all strings that that can take P

from p to q without changing the stack*

V = {Apq | p,qQ }

S = Aq0qaccept

*Starting from any stack S in p, including empty stack,

P has stack S at q.

From PDA to CFG: main idea

9/27/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L8.14

ε,ε → $
0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

q0 q1

q2q3

ε,0 → ε

ε,ε → 0

ε,ε → 0

q4

q5

What strings does Aq0q1 generate?

What strings does Aq1q2 generate?

What strings does Aq1q3 generate?

none

{0n1n | n > 0}

none

Example

9/27/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L8.15

Apq generates all strings that take P from p

to q without changing the stack

Let x be such a string

• P’s first move on x must be a push

• P’s last move on x must be a pop

Consider the stack while reading x. Either:

1. New portion of the stack first empties

only at the end of x
2. New portion empties before the end of x

From PDA to CFG: main idea

9/27/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L8.16

stack

height

input

string p q

Apq → aArsb

r s

ba

1. New portion of the stack first empties

only at the end of x

9/27/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L8.17

stack

height

input

string p r q

Apq → AprArq

2. New portion empties before the end of x

9/27/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L8.18

V = {Apq | p,qQ }

S = Aq0qaccept

For each p,q,r,s  Q, t  Γ and a,b  Σε

If (r,t)  (p,a,ε) and (q, ε)  (s,b,t)

Then add the rule Apq → aArsb

For each p,q,r  Q,

add the rule Apq → AprArq

For each p  Q,

add the rule App → ε

CFG construction

9/27/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L8.19

ε,ε → $
0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

q0 q1

q2q3

ε,0 → ε

ε,ε → 0

ε,ε → 0

q4

q5

What strings does Aq0q1 generate?

What strings does Aq1q2 generate?

What strings does Aq1q3 generate?

Aq0q3 → εAq1q2ε

Aqq → ε

Apq → AprArq

Aq1q2 → 0Aq1q21

Aq1q2 → 0Aq1q11

none

{0n1n | n > 0}

none

9/27/2018 Sofya Raskhodnikova; based on

slides by Nick Hopper

A language is generated by a CFG



It is recognized by a PDA

Equivalence of CFGs & PDAs

9/27/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L8.21

TURING MACHINE (TM)

FINITE

STATE

CONTROL

UNBOUNDED (on the right) TAPE

I N P U T

q0q1

A

0 → 0, R

read write move

 → , R

qaccept

qreject

0 → 0, R

 → , R

0 → 0, R

 → , L

A TM can loop forever

TM can both write to and read from the tape

The head can move left and right

The input does not have to be read entirely

Accept and Reject take immediate effect

TM versus PDA

Infinite tape on the right, stick on the left

TM is deterministic (will consider NTMs later)

L10.24

Testing membership in B = { w#w | w  {0,1}* }

STATE

0 1 1 # 0 1 1

q0, FIND # qGO LEFT

0

q1, FIND # q#, FIND 

#1

q0, FIND 

0

q1, FIND 

1x xx

A TM is a 7-tuple T = (Q, Σ, Γ, , q0, qaccept, qreject):

Q is a finite set of states

Γ is the tape alphabet, where   Γ and Σ ⊆ Γ

q0  Q is the start state

Σ is the input alphabet, where   Σ

 : Q  Γ → Q  Γ  {L,R}

qaccept  Q is the accept state

qreject  Q is the reject state, and qreject  qaccept

Definition of a TM

L10.26

CONFIGURATIONS

11010q700110

q7

1 0 0 0 0 01 1 1 1

0 → , R

 → , R

qacceptqreject

0 → x, R

x → x, R
 → , R

x → x, R

0 → 0, L
x → x, L

x → x, R

 → , L
 → , R

0 → x, R
0 → 0, R

 → , R
x → x, R

{ 0 | n ≥ 0 }
2n

q0 q1

q2

q3

q4

0 → , R

 → , R

qacceptqreject

0 → x, R

x → x, R
 → , R

x → x, R

0 → 0, L
x → x, L

x → x, R

 → , L
 → , R

0 → x, R
0 → 0, R

 → , R
x → x, R

{ 0 | n ≥ 0 }
2n

q0 q1

q2

q3

q4

q00000

q1000

xq300

x0q40

x0xq3

x0q2x

xq20x

q2x0x

q2x0x

A TM on input sting w may

either halt (enter qaccept or qreject)

or never halt (loop)

Accepting and rejecting

L10.30

A TM is a decider if it halts on every input.

A TM decides a language L if it accepts all

strings in L and rejects all strings not in L.

• A language is called recognizable (or

enumerable) if some TM recognizes it.

A TM recognizes a language L if it accepts all

strings in L and no other strings.

Language of a TM

• A language is called decidable (or

recursive) if some TM decides it.

L10.31

