Last time:
- Midterm

Today:
- Turing Machines
- Turing Machine Variants
TM versus PDA

- TM can both write to and read from the tape
- The head can move left and right
- The input does not have to be read entirely
- Accept and Reject take immediate effect
- Infinite tape on the right, stick on the left

TM is deterministic (NTM is nondeterministic)
CONFIGURATIONS

11010q₇001110
MUL = \{1^i1^j1^k \mid ij = k \text{ and } i, j, k \geq 1\}
LUP = \{1^i#x_1#...#x_n \mid n \geq i \text{ and } x_i = x_1\}
A **TM** is a 7-tuple $P = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$

- Q is a finite set of states
- Σ is the input alphabet, where $\square \notin \Sigma$
- Γ is the stack alphabet, where $\square \in \Gamma$ and $\Sigma \subseteq \Gamma$
- $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R\}$ is the transition function
- $q_0, q_{\text{accept}}, q_{\text{reject}} \in Q$ are the start, accept and reject states
Accepting and rejecting

A TM on input string w may

either halt (enter q_{accept} or q_{reject})
or never halt (loop)

A TM is a decider if it halts on every input.
A TM recognizes a language L if it accepts all strings in L and no other strings.

- A language is called recognizable (or enumerable) if some TM recognizes it.

A TM decides a language L if it accepts all strings in L and rejects all strings not in L.

- A language is called decidable (or recursive) if some TM decides it.
Recognizable vs. decidable languages

• A language L is **recognizable** (enumerable) if some TM
 1. accepts strings in L and
 2. rejects strings not in L by entering q_{reject} or looping.

• A language L is **decidable** (recursive) if some TM
 1. accepts strings in L and
 2. rejects strings not in L by entering q_{reject}.
Finite State Control

δ : Q × Γ^k → Q × Γ^k × \{L,R,S\}^k
Theorem: Every Multitape Turing Machine can be transformed into a single-tape Turing Machine.
SIMULATING MULTIPLE TAPES

1. “Format” tape.

2. For each move of the k-tape TM:
 - Scan left-to-right, finding current symbols
 - Scan left-to-right, writing new symbols
 - Scan left-to-right, moving each tape head.

3. If a tape head goes off right end, insert blank.
 - If tape head goes off left end, move back right.
Exercise

Which of these statements are valid descriptions of nondeterministic steps (in a PDA)?

A. Nondeterministically read the input and push it onto the stack.
B. Nondeterministically either read a and push it onto the stack or read b and pop b from the stack.
C. Nondeterministically read the input character a and either push it onto the stack or pop b from the stack.
D. Nondeterministically push one of positive integers onto the stack.
E. None of the above.
F. More than one choice above works.
Theorem. A deterministic TM can simulate a nondeterministic TM.

Proof idea: Consider an NTM N. Use a 3-tape TM.

- Let b be the largest number of nondeterministic choices N has in a step. Use alphabet $\{1, \ldots, b\}$ for addresses.
- Do a BFS of the computation tree.
TMs are equivalent to multitape TMs
(proof on the board)
TMs are equivalent to nondeterministic TMs
(proof on the board)