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Intro to Theory of Computation

LECTURE 12
Last time:

• Turing Machines and Variants

Today

• Turing Machine Variants

• Church-Turing Thesis

• Universal Turing Machine

• Decidable languages
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TMs are equivalent to nondeterministic TMs

TMs are equivalent to multitape TMs

TMs are equivalent to doubly unbounded TMs

TMs are equivalent to…

(last time)

(last time)

TMs are equivalent to enumerators
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(last time)



TM variant: enumerator

• Starts with a blank tape

• Prints strings

L(E) = set of strings that E eventually prints.

Enumerator E  enumerates language L(E).

May never terminate even if the language is finite.

May print the same string many times.
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TMs vs. enumerators 

Theorem. A language is Turing-recognizable ⇔
some enumerator enumerates it.

Proof:

⇐ Start with an enumerator E that enumerates A.

Give a TM that recognizes A.
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TMs vs. enumerators 

Theorem. A language is Turing-recognizable ⇔
some enumerator enumerates it.

Proof:

⇒ Start with a TM M that recognizes A.

Give an enumerator E that enumerates A.

Let 𝑠1, 𝑠2, … be all strings in Σ∗ in string order.
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TMs are equivalent to nondeterministic TMs

TMs are equivalent to 2-stack PDA.

TMs are equivalent to cellular automata.

TMs are equivalent to multitape TMs

TMs are equivalent to double unbounded TMs

TMs are equivalent to primitive recursive functions.

TMs are equivalent to…

(last time)

(last time)

(last time)

(HW problem)

TMs are equivalent to enumerators.
(on the board)
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L is recognized by a program

for some computer*

↕

L is recognized by a TM

* The computer must be “reasonable”
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The Church-Turing Thesis (1936)

History

• 23 Hilbert’s problems (1900)

• stated at International Congress of Mathematicians

• 10th problem: Give a procedure for determining if a 

polynomial in k variables has an integral root.
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R1:

R2:



RAM:

1101001…

1011001…

#1011#1101101#1011001#...#

Programs for a computer have instructions like

ADD R1, R2, R3; LOAD R1, R2; STORE R1,R2; MUL R1, R2, R2; BRANCH R1, X;…

The Church-Turing Thesis is consistent 

with all known “reasonable” computers
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Programming languages 

• Programming languages  like Java, Python, 

Scheme, C, … are equivalent to TMs

• We call such languages Turing-complete
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Corollary. If two programming languages are Turing-complete, 

then they can recognize exactly the same set of languages.
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• Since TMs and programming languages  are equivalent, we can 

think of TMs as programs.

• Since programs are strings, we can consider languages whose 

elements are programs.
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A universal Turing Machine
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0n10m10k10s10t10r10u1…〈 〉

states Q={0,1,…,n-1}

tape symbols Γ={0,1…,m-1}

(first k are input symbols)

start 

state

accept 

state

reject 

state

blank 

symbol

 :〈(p,a), (q,b,L)〉 = 0p10a10q10b10

Can we encode a Turing Machine 

as a string of 0s and 1s?

•〈O〉denotes an encoding of object O as a string
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• Since TMs and programming languages  are equivalent, we can 

think of TMs as programs.

• Since programs are strings, we can consider languages whose 

elements are programs.

• 〈M〉denotes an encoding of a TM M as a string
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A universal Turing Machine

Theorem.  We can make a Universal TM, a TM that takes any TM 

description〈M〉and a description  of any string w as input and 

simulates the computation of M on w.

FINITE 

CONTROL
tape contents

state

encoding of M

〈w〉

〈M〉

〈q0〉

〈w〉= 〈𝑤1,…,𝑤𝑛〉
= 0

𝑤110
𝑤21…0

𝑤𝑛
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Encodings of DFAs, NFAs, CFGs, etc

• Similarly, we can encode DFAs, NFAs, regular expressions, 

PDAs, CFGs, etc into strings of 0s and 1s.

• We can define the following languages:

ADFA = { 〈D,w〉 | D is a DFA that accepts string w }

ANFA = { 〈N,w〉 | N is an NFA that accepts string w }

ACFG = { 〈G,w〉 | G is a CFG that generates string w }
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Proof: The following TM M decides ADFA. 

M = `` On input 〈𝑫,𝑤〉, where 𝑫 is a DFA and 𝑤 is a string:

Theorem. ADFA is decidable.

1. Check if input (to M) is legal, reject if not.

2. Simulate 𝑫 on 𝑤.

3. Accept if 𝐷 ends in an accept state. O.w. reject.’’

M

𝐷 𝑤

Current state of 𝐷

(This step is assumed to be the first step of every algorithm.)

Corollary. ANFA is decidable.
(1.  Convert input NFA 𝑵 to an equivalent DFA 𝑫.)
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Theorem. ACFG is decidable.

ACFG = { 〈G,w〉 | G is a CFG that generates string w }
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Chomsky Normal Form for CFGs

• Can have a rule 𝑆 → ε.

• All remaining rules are of the form

𝐴 → 𝐵𝐶 𝐴, 𝐵, 𝐶 ∈ 𝑉

𝐴 → 𝑎 𝑎 ∈ Σ

• Cannot have 𝑆 on the RHS of any rule.

Lemma. Any CFG can be converted into an equivalent 

CFG in Chomsky normal form. (Proof in Sipser.)

Lemma. If G is in Chomsky normal form, any derivation 

of string w of length 𝑛 in G has 2𝑛 − 1 steps.
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Chomsky Normal Form for CFGs

Lemma. If G is in Chomsky normal form, any derivation 

of string 𝑤 of length 𝑛 in G has 2𝑛 − 1 steps.

Proof idea: 

• Only rules of the form 𝐴 → 𝐵𝐶 increase the number of 

symbols: need to apply rules of this form 𝑛 − 1 times.

• Only rules of the form 𝐴 → 𝑎 replace variables with 

terminals: need to apply rules of this form 𝑛 times.
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Theorem. ACFG is decidable.

ACFG = { 〈G,w〉 | G is a CFG that generates string w }

Proof: The following TM M decides ACFG. 

M = `` On input 〈𝑮, 𝑤〉, where 𝑮 is a CFG and 𝑤 is a string:

1. Convert G to Chomsky normal form.

2. Let 𝑛 = |𝑤|.
3. Test all derivations with 2𝑛 − 1 steps.

4. Accept if any derived 𝒘. O.w. reject.’’
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Examples of decidable languages

ADFA = { 〈D,w〉 | D is a DFA that accepts string w }

ANFA = { 〈N,w〉 | N is an NFA that accepts string w }

ACFG = { 〈G,w〉 | G is a CFG that generates string w }
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