
Sofya Raskhodnikova

Intro to Theory of Computation

LECTURE 12
Last time:

• Turing Machines and Variants

Today

• Turing Machine Variants

• Church-Turing Thesis

• Universal Turing Machine

• Decidable languages

10/10/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L12.1

TMs are equivalent to nondeterministic TMs

TMs are equivalent to multitape TMs

TMs are equivalent to doubly unbounded TMs

TMs are equivalent to…

(last time)

(last time)

TMs are equivalent to enumerators

10/10/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L12.2

(last time)

TM variant: enumerator

• Starts with a blank tape

• Prints strings

L(E) = set of strings that E eventually prints.

Enumerator E enumerates language L(E).

May never terminate even if the language is finite.

May print the same string many times.

10/10/2018

FINITE

CONTROL

printer

tape

L12.3

TMs vs. enumerators

Theorem. A language is Turing-recognizable ⇔
some enumerator enumerates it.

Proof:

⇐ Start with an enumerator E that enumerates A.

Give a TM that recognizes A.

10/10/2018 L12.4

TMs vs. enumerators

Theorem. A language is Turing-recognizable ⇔
some enumerator enumerates it.

Proof:

⇒ Start with a TM M that recognizes A.

Give an enumerator E that enumerates A.

Let 𝑠1, 𝑠2, … be all strings in Σ∗ in string order.

10/16/2018 L12.5

TMs are equivalent to nondeterministic TMs

TMs are equivalent to 2-stack PDA.

TMs are equivalent to cellular automata.

TMs are equivalent to multitape TMs

TMs are equivalent to double unbounded TMs

TMs are equivalent to primitive recursive functions.

TMs are equivalent to…

(last time)

(last time)

(last time)

(HW problem)

TMs are equivalent to enumerators.
(on the board)

10/10/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L12.6

L is recognized by a program

for some computer*

↕

L is recognized by a TM

* The computer must be “reasonable”

10/10/2018 Sofya Raskhodnikova; based on slides by Nick Hopper

The Church-Turing Thesis (1936)

History

• 23 Hilbert’s problems (1900)

• stated at International Congress of Mathematicians

• 10th problem: Give a procedure for determining if a

polynomial in k variables has an integral root.

L12.7

R1:

R2:

RAM:

1101001…

1011001…

#1011#1101101#1011001#...#

Programs for a computer have instructions like

ADD R1, R2, R3; LOAD R1, R2; STORE R1,R2; MUL R1, R2, R2; BRANCH R1, X;…

The Church-Turing Thesis is consistent

with all known “reasonable” computers

10/10/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L12.8

Programming languages

• Programming languages like Java, Python,

Scheme, C, … are equivalent to TMs

• We call such languages Turing-complete

10/10/2018 Sofya Raskhodnikova; based on slides by Nick Hopper

Corollary. If two programming languages are Turing-complete,

then they can recognize exactly the same set of languages.

L12.9

• Since TMs and programming languages are equivalent, we can

think of TMs as programs.

• Since programs are strings, we can consider languages whose

elements are programs.

10/10/2018 Sofya Raskhodnikova; based on slides by Nick Hopper

A universal Turing Machine

L14.10

0n10m10k10s10t10r10u1…〈 〉

states Q={0,1,…,n-1}

tape symbols Γ={0,1…,m-1}

(first k are input symbols)

start

state

accept

state

reject

state

blank

symbol

 :〈(p,a), (q,b,L)〉 = 0p10a10q10b10

Can we encode a Turing Machine

as a string of 0s and 1s?

•〈O〉denotes an encoding of object O as a string

10/10/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L14.11

• Since TMs and programming languages are equivalent, we can

think of TMs as programs.

• Since programs are strings, we can consider languages whose

elements are programs.

• 〈M〉denotes an encoding of a TM M as a string

10/10/2018 Sofya Raskhodnikova; based on slides by Nick Hopper

A universal Turing Machine

Theorem. We can make a Universal TM, a TM that takes any TM

description〈M〉and a description of any string w as input and

simulates the computation of M on w.

FINITE

CONTROL
tape contents

state

encoding of M

〈w〉

〈M〉

〈q0〉

〈w〉= 〈𝑤1,…,𝑤𝑛〉
= 0

𝑤110
𝑤21…0

𝑤𝑛

L14.12

10/10/2018 Sofya Raskhodnikova; based on slides by Nick Hopper

Encodings of DFAs, NFAs, CFGs, etc

• Similarly, we can encode DFAs, NFAs, regular expressions,

PDAs, CFGs, etc into strings of 0s and 1s.

• We can define the following languages:

ADFA = { 〈D,w〉 | D is a DFA that accepts string w }

ANFA = { 〈N,w〉 | N is an NFA that accepts string w }

ACFG = { 〈G,w〉 | G is a CFG that generates string w }

L14.13

Proof: The following TM M decides ADFA.

M = `` On input 〈𝑫,𝑤〉, where 𝑫 is a DFA and 𝑤 is a string:

Theorem. ADFA is decidable.

1. Check if input (to M) is legal, reject if not.

2. Simulate 𝑫 on 𝑤.

3. Accept if 𝐷 ends in an accept state. O.w. reject.’’

M

𝐷 𝑤

Current state of 𝐷

(This step is assumed to be the first step of every algorithm.)

Corollary. ANFA is decidable.
(1. Convert input NFA 𝑵 to an equivalent DFA 𝑫.)

10/10/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L14.14

Theorem. ACFG is decidable.

ACFG = { 〈G,w〉 | G is a CFG that generates string w }

10/10/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L14.15

10/10/2018 Sofya Raskhodnikova; based on slides by Nick Hopper

Chomsky Normal Form for CFGs

• Can have a rule 𝑆 → ε.

• All remaining rules are of the form

𝐴 → 𝐵𝐶 𝐴, 𝐵, 𝐶 ∈ 𝑉

𝐴 → 𝑎 𝑎 ∈ Σ

• Cannot have 𝑆 on the RHS of any rule.

Lemma. Any CFG can be converted into an equivalent

CFG in Chomsky normal form. (Proof in Sipser.)

Lemma. If G is in Chomsky normal form, any derivation

of string w of length 𝑛 in G has 2𝑛 − 1 steps.

L14.16

10/10/2018 Sofya Raskhodnikova; based on slides by Nick Hopper

Chomsky Normal Form for CFGs

Lemma. If G is in Chomsky normal form, any derivation

of string 𝑤 of length 𝑛 in G has 2𝑛 − 1 steps.

Proof idea:

• Only rules of the form 𝐴 → 𝐵𝐶 increase the number of

symbols: need to apply rules of this form 𝑛 − 1 times.

• Only rules of the form 𝐴 → 𝑎 replace variables with

terminals: need to apply rules of this form 𝑛 times.

L14.17

Theorem. ACFG is decidable.

ACFG = { 〈G,w〉 | G is a CFG that generates string w }

Proof: The following TM M decides ACFG.

M = `` On input 〈𝑮, 𝑤〉, where 𝑮 is a CFG and 𝑤 is a string:

1. Convert G to Chomsky normal form.

2. Let 𝑛 = |𝑤|.
3. Test all derivations with 2𝑛 − 1 steps.

4. Accept if any derived 𝒘. O.w. reject.’’

10/10/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L14.18

10/10/2018 Sofya Raskhodnikova; based on slides by Nick Hopper

Examples of decidable languages

ADFA = { 〈D,w〉 | D is a DFA that accepts string w }

ANFA = { 〈N,w〉 | N is an NFA that accepts string w }

ACFG = { 〈G,w〉 | G is a CFG that generates string w }

L14.19

