Intro to Theory of Computation

LECTURE 12 Last time:

- Turing Machines and Variants Today
- Turing Machine Variants
- Church-Turing Thesis
- Universal Turing Machine

L12.1

Decidable languages

Sofya Raskhodnikova

- TMs are equivalent to multitape TMs (last time) TMs are equivalent to nondeterministic TMs (last time) TMs are equivalent to doubly unbounded TMs (last time)
- TMs are equivalent to enumerators

- Starts with a blank tape
- Prints strings

L(E) = set of strings that E eventually prints.

Enumerator E enumerates language L(E).

May never terminate even if the language is finite. May print the same string many times.

Theorem. A language is Turing-recognizable \Leftrightarrow some enumerator enumerates it.

Proof:

 \Leftarrow Start with an enumerator E that enumerates A. Give a TM that recognizes A.

Theorem. A language is Turing-recognizable \Leftrightarrow some enumerator enumerates it.

Proof:

⇒ Start with a TM M that recognizes A. Give an enumerator E that enumerates A. Let $s_1, s_2, ...$ be all strings in Σ^* in string order.

- TMs are equivalent to multitape TMs (last time)
- TMs are equivalent to nondeterministic TMs (last time)
- TMs are equivalent to double unbounded TMs (last time)
- TMs are equivalent to enumerators. (on the board)
- TMs are equivalent to 2-stack PDA.

(HW problem)

TMs are equivalent to primitive recursive functions. TMs are equivalent to cellular automata.

The Church-Turing Thesis (1936)

L is recognized by a program for some computer* L is recognized by a TM History

- 23 Hilbert's problems (1900)
 - stated at International Congress of Mathematicians
 - 10th problem: Give a procedure for determining if a polynomial in *k* variables has an integral root.

* The computer must be "reasonable"

R1:	1101001
R2:	1011001
•	

RAM: #1011#1101101#1011001#...#

Programs for a computer have instructions like ADD R1, R2, R3; LOAD R1, R2; STORE R1, R2; MUL R1, R2, R2; BRANCH R1, X;...

Programming languages

- Programming languages like Java, Python, Scheme, C, ... are equivalent to TMs
- We call such languages **Turing-complete**

Corollary. If two programming languages are Turing-complete, then they can recognize exactly the same set of languages.

A universal Turing Machine

- Since TMs and programming languages are equivalent, we can think of TMs as programs.
- Since programs are strings, we can consider languages whose elements are programs.

Can we encode a Turing Machineas a string of 0s and 1s?

• **(O)** denotes an encoding of object O as a string

A universal Turing Machine

- Since TMs and programming languages are equivalent, we can think of TMs as programs.
- Since programs are strings, we can consider languages whose elements are programs.
- **(M)** denotes an encoding of a TM M as a string

Theorem. We can make a **Universal TM**, a TM that takes any TM description $\langle M \rangle$ and a description of any string w as input and simulates the computation of M on w.

Encodings of DFAs, NFAs, CFGs, etc

- Similarly, we can encode DFAs, NFAs, regular expressions, PDAs, CFGs, etc into strings of 0s and 1s.
- We can define the following languages:

 $A_{DFA} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts string } w \}$

 $A_{NFA} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts string } w \}$

 $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$

Theorem. A_{DFA} is decidable.

Proof: The following TM M decides A_{DFA} .

M = `` On input $\langle D, w \rangle$, where D is a DFA and w is a string:

1. Check if input (to M) is legal, reject if not. (This step is assumed to be the first step of every algorithm.)

2. Simulate D on w.

3. Accept if *D* ends in an accept state. O.w. reject."

Corollary. A_{NFA} is decidable. (1. Convert input NFA N to an equivalent DFA D.) L14.14

$A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$

Chomsky Normal Form for CFGs

- Can have a rule $S \rightarrow \varepsilon$.
- All remaining rules are of the form $A \rightarrow BC$ $A, B, C \in V$ $A \rightarrow a$ $a \in \Sigma$
- Cannot have *S* on the RHS of any rule.

Lemma. Any CFG can be converted into an equivalent CFG in Chomsky normal form. (Proof in Sipser.) Lemma. If G is in Chomsky normal form, any derivation of string w of length n in G has 2n - 1 steps.

Chomsky Normal Form for CFGs

Lemma. If G is in Chomsky normal form, any derivation of string w of length n in G has 2n - 1 steps. Proof idea:

- Only rules of the form $A \rightarrow BC$ increase the number of symbols: need to apply rules of this form n 1 times.
- Only rules of the form A → a replace variables with terminals: need to apply rules of this form n times.

Theorem. A_{CFG} is decidable.

$A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$

Proof: The following TM M decides A_{CFG} .

M = `` On input $\langle G, w \rangle$, where G is a CFG and w is a string:

1. Convert G to Chomsky normal form.

2. Let
$$n = |w|$$
.

- **3.** Test all derivations with 2n 1 steps.
- 4. Accept if any derived w. O.w. reject."

Examples of decidable languages

$A_{DFA} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts string } w \}$

$A_{NFA} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts string } w \}$

$A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$