Intro to Theory of Computation

LECTURE 13

Last time:

- Turing Machine Variants
- Church-Turing Thesis
- Universal Turing Machine

L13.1

- Decidable languages **Today**
- Decidable languages
- Designing deciders

Sofya Raskhodnikova

- We can encode DFAs, NFAs, regular expressions, PDAs, CFGs, etc into strings of 0s and 1s.
- We defined the following languages:

 $A_{DFA} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts string } w \}$

 $A_{NFA} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts string } w \}$

 $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$

Recall: Examples of decidable languages

$A_{DFA} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts string } w \}$

$A_{NFA} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts string } w \}$

$A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$

Decidable languages: more examples

 $\mathbf{E}_{\mathbf{DFA}} = \{ \langle \mathbf{D} \rangle \mid \mathbf{D} \text{ is a DFA that recognizes the empty language } \}$ $\mathbf{EQ}_{\mathbf{DFA}} = \{ \langle D_1, D_2 \rangle \mid D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2) \}$ $\mathbf{E}_{\mathbf{CFG}} = \{ \langle \mathbf{G} \rangle \mid \mathbf{G} \text{ is a CFG that generates the empty language} \}$

E_{DFA} = { $\langle D \rangle$ | *D* is a DFA that recognizes \emptyset .}

Proof: The following TM M decides E_{DFA} .

M = `` On input $\langle D \rangle$, where *D* is a DFA:

- 1. Use BFS to determine if an accepting state of D is reachable from from its start state.
- 2. Accept if not. O.w. reject."

Theorem. EQ_{DFA} is decidable.

$\mathbf{EQ}_{\mathbf{DFA}} = \{ \langle D_1, D_2 \rangle | D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2) \}$

Proof: The following TM M decides EQ_{DFA} .

M = `` On input $\langle D_1, D_2 \rangle$, where D_1, D_2 are DFAs:

- 1. Construct a DFA D that recognizes (on the the set difference of $L(D_1)$ and $L(D_2)$. board)
- **2.** Run the decider for E_{DFA} on <D>.
- 3. If it accepts, accept. O.w. reject."

Theorem. E_{CFG} is decidable.

E_{CFG} = { $\langle G \rangle$ | *G* is a CFG that generates no strings}

Proof: The following TM M decides E_{CFG} .

M = `` On input $\langle G \rangle$, where G is a CFG:

- 1. Mark all terminals in G.
- 2. Repeat until no new variable is marked:
- 3. Mark any variable A where G has a rule $A \rightarrow \cdots$ and each variable/terminal on the RHS is already marked.
- 4. Accept if the start variable is unmarked. O.w. reject."

• Prove that the following language is decidable:

$\mathbf{R}_{\mathbf{DFA}} = \{ \langle \mathbf{D}, \mathbf{w} \rangle \mid \mathbf{D} \text{ is a DFA that rejects string } \mathbf{w} \}$

• Formulate the following problem as a language and prove that it is decidable:

Given a PDA and a string, determine if the PDA accepts the string.

 $A_{PDA} = \{ \langle P, w \rangle \mid P \text{ is a PDA that accepts string } w \}$

Can a TM just simulate P on w, accept if it accepts and reject o.w.?

A decider for A_{PDA} can, on input <**P**, w>

- A. simulate P on w, accept if it accepts and reject o.w.
- B. convert P to an equivalent CFG G and then run a decider for A_{CFG} , accept if it accepts and reject o.w.
- C. convert P to an equivalent CFG G and then run a decider for A_{CFG} , accept if it rejects and reject o.w.
- **D**. None of the above.
- E. More than one choice above works.

$A_{DFA} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts string } w \}$ $E_{DFA} = \{ \langle D \rangle \mid D \text{ is a DFA and } L(D) = \emptyset \}$ $EQ_{DFA} = \{ \langle D_1, D_2 \rangle \mid D_1, D_2 \text{ DFAs and } L(D_1) = L(D_2) \}$

$A_{DFA}, E_{DFA}, EQ_{DFA}, A_{CFG}, E_{CFG}$ are decidable.

Theorem. Every CFL is decidable.

Proof: Let G be a CFG for L.

Design a TM M_G that decides L.

 Is it a good idea to convert G to an equivalent PDA P and have M_G simulate P?

G is a CFG for L. Design a TM M_G that decides L.

Is it a good idea to convert G to an equivalent PDA P and have *M_G* simulate P?

- A. Yes. Why not?
- **B**. No, we can't always convert G to an equivalent PDA.
- C. No, P might loop on some inputs.
- **D**. No, because we don't have any input to run P on.
- E. None of the above.

G is a CFG for L. Design a TM M_G that decides L. A decider for which language is useful as a subroutine?

- A. for A_{DFA}
- B. for E_{DFA}
- C. for EQ_{DFA}
- D. for A_{CFG}
- E. for E_{CFG}

Theorem. Every CFL is decidable.

Proof: Let G be a CFG for L.

Design a TM M_G that decides L.

- Is it a good idea to convert G to an equivalent PDA P and have M_G simulate P?
- M = On input w:
 - 1. Run the decider for A_{CFG} on input <G,w>.
 - 2. Accept if it accepts. O.w. reject."

Theorem. INFINITE_{DFA} is decidable.

INFINITE_{DFA} = { $\langle D \rangle$ | D is a DFA and L(D) is infinite}

- Idea: Let *n* be the number of states in D. L(D) is infinite iff D accepts a string of length $\ge n$.
- **Proof:** The following TM M decides $INFINITE_{DFA}$.
- **M** = `` On input $\langle D \rangle$, where *D* is a DFA:
 - 1. Let n be the number of states in D.
 - 2. Let C be a DFA for $\{w \mid |w| \ge n\}$.
 - 3. Build a DFA B for $L(C) \cap L(D)$.
 - 4. Run a decider for E_{DFA} on $\langle B \rangle$.
 - 5. Accept if it rejects. O.w. reject."

• Formulate the following problem as a language and prove that it is decidable:

Given a DFA, determine if it accepts some palindrome.

Problems in language theory

A _{DFA} decidable	A _{CFG} decidable	A _{TM} ?
E _{DFA} decidable	E _{CFG} decidable	E _{TM} ?
EQ _{DFA} decidable	EQ _{CFG} ?	EQ _{TM} ?