Lecture 13

Last time:
• Turing Machine Variants
• Church-Turing Thesis
• Universal Turing Machine
• Decidable languages

Today
• Decidable languages
• Designing deciders

Sofya Raskhodnikova
Recall

- We can encode DFAs, NFAs, regular expressions, PDAs, CFGs, etc into strings of 0s and 1s.
- We defined the following languages:

 \[A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts string } w \} \]

 \[A_{\text{NFA}} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts string } w \} \]

 \[A_{\text{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \} \]
Recall: Examples of decidable languages

\[A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts string } w \} \]

\[A_{\text{NFA}} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts string } w \} \]

\[A_{\text{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \} \]
Decidable languages: more examples

\[
\begin{align*}
\mathbf{E}_{\text{DFA}} &= \{ \langle D \rangle \mid D \text{ is a DFA that recognizes the empty language} \} \\
\mathbf{EQ}_{\text{DFA}} &= \{ \langle D_1, D_2 \rangle \mid D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2) \} \\
\mathbf{E}_{\text{CFG}} &= \{ \langle G \rangle \mid G \text{ is a CFG that generates the empty language} \}
\end{align*}
\]
Theorem. E_{DFA} is decidable.

$E_{DFA} = \{ \langle D \rangle | D$ is a DFA that recognizes $\emptyset. \}$

Proof: The following TM M decides E_{DFA}.
$M = \text{``On input } \langle D \rangle, \text{ where } D \text{ is a DFA:} \$

1. Use BFS to determine if an accepting state of D is reachable from from its start state.
2. Accept if not. O.w. reject.”
Theorem. EQ_{DFA} is decidable.

$$\text{EQ}_{\text{DFA}} = \{ \langle D_1, D_2 \rangle | \ D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2) \}$$

Proof: The following TM M decides EQ_{DFA}.

$M = \text{``On input } \langle D_1, D_2 \rangle, \text{ where } D_1, D_2 \text{ are DFAs:}$$

1. Construct a DFA D that recognizes the set difference of $L(D_1)$ and $L(D_2)$.
2. Run the decider for E_{DFA} on $<D>$.
3. If it accepts, accept. O.w. reject."
Theorem. \(E_{\text{CFG}} \) is decidable.

\[
E_{\text{CFG}} = \{ \langle G \rangle \mid G \text{ is a CFG that generates no strings} \}
\]

Proof: The following TM \(M \) decides \(E_{\text{CFG}} \).

\[M = \"\text{On input } \langle G \rangle, \text{ where } G \text{ is a CFG:} \]

1. Mark all terminals in \(G \).
2. Repeat until no new variable is marked:
3. Mark any variable \(A \) where \(G \) has a rule \(A \rightarrow \cdots \) and each variable/terminal on the RHS is already marked.
4. Accept if the start variable is unmarked. O.w. reject."
Prove that the following language is decidable:

\[R_{DFA} = \{ \langle D, w \rangle \mid D \text{ is a DFA that rejects string } w \} \]

Formulate the following problem as a language and prove that it is decidable:

Given a PDA and a string, determine if the PDA accepts the string.

\[A_{PDA} = \{ \langle P, w \rangle \mid P \text{ is a PDA that accepts string } w \} \]

Can a TM just simulate P on w, accept if it accepts and reject o.w.?
Exercise

A decider for A_{PDA} can, on input $<P, w>$

A. simulate P on w, accept if it accepts and reject o.w.
B. convert P to an equivalent CFG G and then run a decider for A_{CFG}, accept if it accepts and reject o.w.
C. convert P to an equivalent CFG G and then run a decider for A_{CFG}, accept if it rejects and reject o.w.
D. None of the above.
E. More than one choice above works.
Examples of decidable languages so far

\[\text{A}_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts string } w \} \]
\[\text{E}_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a DFA and } L(D) = \emptyset \} \]
\[\text{EQ}_{\text{DFA}} = \{ \langle D_1, D_2 \rangle \mid D_1, D_2 \text{ DFAs and } L(D_1) = L(D_2) \} \]

\text{A}_{\text{DFA}}, \text{E}_{\text{DFA}}, \text{EQ}_{\text{DFA}}, \text{A}_{\text{CFG}}, \text{E}_{\text{CFG}} \text{ are decidable.}
Classes of languages

recognizable

decidable

CFL

regular
Theorem. Every CFL is decidable.

Proof: Let G be a CFG for L. Design a TM M_G that decides L.
- Is it a good idea to convert G to an equivalent PDA P and have M_G simulate P?
Exercise

G is a CFG for L. Design a TM M_G that decides L.

Is it a good idea to convert G to an equivalent PDA P and have M_G simulate P?

A. Yes. Why not?
B. No, we can’t always convert G to an equivalent PDA.
C. No, P might loop on some inputs.
D. No, because we don’t have any input to run P on.
E. None of the above.
G is a CFG for L. Design a TM M_G that decides L. A decider for which language is useful as a subroutine?

A. for A_{DFA}
B. for E_{DFA}
C. for EQ_{DFA}
D. for A_{CFG}
E. for E_{CFG}
Theorem. Every CFL is decidable.

Proof: Let G be a CFG for L. Design a TM M_G that decides L.

- Is it a good idea to convert G to an equivalent PDA P and have M_G simulate P?

$M =$ ``On input w:"

1. Run the decider for A_{CFG} on input $<G,w>$.
2. Accept if it accepts. O.w. reject."
Classes of languages

recognizable

decidable

CFL

regular
Theorem. \(\text{INFINITE}_{\text{DFA}} \) is decidable.

\(\text{INFINITE}_{\text{DFA}} = \{ \langle D \rangle | \text{D is a DFA and } L(D) \text{ is infinite}\} \)

Idea: Let \(n \) be the number of states in \(D \).
L(D) is infinite iff \(D \) accepts a string of length \(\geq n \).

Proof: The following TM \(M \) decides \(\text{INFINITE}_{\text{DFA}} \).

\(M = \text{``On input } \langle D \rangle, \text{ where } D \text{ is a DFA:} \)

1. Let \(n \) be the number of states in \(D \).
2. Let \(C \) be a DFA for \(\{ w \mid |w| \geq n \} \).
3. Build a DFA \(B \) for \(L(C) \cap L(D) \).
4. Run a decider for \(E_{\text{DFA}} \) on \(\langle B \rangle \).
5. Accept if it rejects. O.w. reject.”
Theorem. PAL_{DFA} is decidable.

- Formulate the following problem as a language and prove that it is decidable:

 Given a DFA, determine if it accepts some palindrome.
Problems in language theory

<table>
<thead>
<tr>
<th>A_{DFA}</th>
<th>A_{CFG}</th>
<th>A_{TM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>decidable</td>
<td>decidable</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_{DFA}</th>
<th>E_{CFG}</th>
<th>E_{TM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>decidable</td>
<td>decidable</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EQ_{DFA}</th>
<th>EQ_{CFG}</th>
<th>EQ_{TM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>decidable</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>