
Sofya Raskhodnikova

Intro to Theory of Computation

LECTURE 13
Last time:

• Turing Machine Variants

• Church-Turing Thesis

• Universal Turing Machine

• Decidable languages

Today

• Decidable languages

• Designing deciders

10/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L13.1

10/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper

Recall

• We can encode DFAs, NFAs, regular expressions, PDAs, CFGs,

etc into strings of 0s and 1s.

• We defined the following languages:

ADFA = { 〈D,w〉 | D is a DFA that accepts string w }

ANFA = { 〈N,w〉 | N is an NFA that accepts string w }

ACFG = { 〈G,w〉 | G is a CFG that generates string w }

L13.2

10/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper

Recall: Examples of decidable languages

ADFA = { 〈D,w〉 | D is a DFA that accepts string w }

ANFA = { 〈N,w〉 | N is an NFA that accepts string w }

ACFG = { 〈G,w〉 | G is a CFG that generates string w }

L13.3

10/18/2018

Decidable languages: more examples

EDFA = { 〈D〉 | D is a DFA that recognizes the empty language }

EQDFA = { 〈𝐷1, 𝐷2〉 | 𝐷1, 𝐷2 are DFAs and 𝐿(𝐷1) = 𝐿(𝐷2) }

ECFG = { 〈G〉 | G is a CFG that generates the empty language}

Sofya Raskhodnikova; based on slides by Nick Hopper L13.4

Theorem. EDFA is decidable.

EDFA = { ⟨𝑫⟩ | 𝑫 is a DFA that recognizes ∅.}

10/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L13.5

Proof: The following TM M decides EDFA.

M = `` On input 〈𝑫〉, where 𝑫 is a DFA:

1. Use BFS to determine if an accepting state of D

is reachable from from its start state.

2. Accept if not. O.w. reject.’’

Theorem. EQDFA is decidable.

EQDFA = { ⟨𝑫𝟏, 𝑫𝟐⟩| 𝑫𝟏, 𝑫𝟐 are DFAs and 𝑳 𝑫𝟏 = 𝑳(𝑫𝟐)}

10/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L13.6

Proof: The following TM M decides EQDFA.

M = `` On input 〈𝑫𝟏, 𝑫𝟐〉, where 𝑫𝟏, 𝑫𝟐 are DFAs:

1. Construct a DFA D that recognizes

the set difference of 𝑳 𝑫𝟏 and 𝑳(𝑫𝟐).
2. Run the decider for EDFA on <D>.

3. If it accepts, accept. O.w. reject.’’

(on the

board)

Theorem. ECFG is decidable.

ECFG = { ⟨𝑮⟩ | 𝑮 is a CFG that generates no strings}

10/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L13.7

Proof: The following TM M decides ECFG.

M = `` On input 〈𝑮〉, where 𝑮 is a CFG:

1. Mark all terminals in G.

2. Repeat until no new variable is marked:

3. Mark any variable A where G has a rule A→ ⋯ and

each variable/terminal on the RHS is already marked.

4. Accept if the start variable is unmarked. O.w. reject.’’

10/18/2018

Exercises

• Prove that the following language is decidable:

• Formulate the following problem as a language and prove that it

is decidable:

Given a PDA and a string, determine if the PDA accepts the string.

Can a TM just simulate P on w, accept if it accepts and reject o.w.?

RDFA = { 〈D,w〉 | D is a DFA that rejects string w }

APDA = { 〈P,w〉 | P is a PDA that accepts string w }

Sofya Raskhodnikova; based on slides by Nick Hopper L13.8

Exercise

A decider for APDA can, on input <P, w>

A. simulate P on w, accept if it accepts and reject o.w.

B. convert P to an equivalent CFG G and then run a

decider for ACFG, accept if it accepts and reject o.w.

C. convert P to an equivalent CFG G and then run a

decider for ACFG, accept if it rejects and reject o.w.

D. None of the above.

E. More than one choice above works.

10/18/2018

Examples of decidable languages so far

ADFA = { 𝑫,𝒘 ∣ D is a DFA that accepts string w }

EDFA = { 𝑫 ∣ D is a DFA and L(D)=∅}

EQDFA = { 𝑫𝟏, 𝑫𝟐 ∣ 𝑫𝟏, 𝑫𝟐 DFAs and 𝑳(𝑫𝟏) = 𝑳(𝑫𝟐)}

Sofya Raskhodnikova; based on slides by Nick Hopper L13.10

ADFA , EDFA, EQDFA, ACFG, ECFG are decidable.

10/18/2018

Classes of languages

CFL

regular

recognizable

decidable

Theorem. Every CFL is decidable.

10/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L13.12

Proof: Let G be a CFG for L.

Design a TM 𝑀𝐺 that decides L.

• Is it a good idea to convert G to an equivalent

PDA P and have 𝑴𝑮 simulate P?

Exercise

G is a CFG for L. Design a TM 𝑀𝐺 that decides L.

Is it a good idea to convert G to an equivalent

PDA P and have 𝑴𝑮 simulate P?

A. Yes. Why not?

B. No, we can’t always convert G to an equivalent PDA.

C. No, P might loop on some inputs.

D. No, because we don’t have any input to run P on.

E. None of the above.

Exercise

G is a CFG for L. Design a TM 𝑀𝐺 that decides L.

A decider for which language is useful as a

subroutine?

A. for ADFA

B. for EDFA

C. for EQDFA

D. for ACFG

E. for ECFG

Theorem. Every CFL is decidable.

10/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper L13.15

Proof: Let G be a CFG for L.

Design a TM 𝑀𝐺 that decides L.

• Is it a good idea to convert G to an equivalent

PDA P and have 𝑴𝑮 simulate P?

M = `` On input 𝒘:

1. Run the decider for ACFG on input <G,w>.

2. Accept if it accepts. O.w. reject.’’

10/18/2018

Classes of languages

Sofya Raskhodnikova; based on slides by Nick Hopper

CFL

regular

recognizable

decidable

Let 𝒏 be the number of states in D.

L(D) is infinite iff D accepts a string of length ≥ 𝒏.

INFINITEDFA = { 〈D〉 | D is a DFA and L(D) is infinite}

Idea:

Theorem. INFINITEDFA is decidable.

Proof: The following TM M decides INFINITEDFA.

M = `` On input 〈𝑫〉, where 𝑫 is a DFA:

1. Let 𝒏 be the number of states in D.

2. Let C be a DFA for {w | |w| ≥ 𝑛}.

3. Build a DFA B for L(C) ∩ L(D).

4. Run a decider for EDFA on 𝑩 .
5. Accept if it rejects. O.w. reject.’’

10/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper

10/18/2018

Theorem. PALDFA is decidable.

• Formulate the following problem as a language and

prove that it is decidable:

Given a DFA, determine if it accepts some palindrome.

Sofya Raskhodnikova; based on slides by Nick Hopper L13.18

10/18/2018 Sofya Raskhodnikova; based on slides by Nick Hopper

ADFA

decidable

ACFG

decidable

EDFA

decidable

ECFG

decidable

EQDFA

decidable

Problems in language theory

ATM

?

ETM

?

EQTM

?

EQCFG

?

L13.19

