Lecture 13

Last time:
- Turing Machine Variants
- Church-Turing Thesis
- Universal Turing Machine
- Decidable languages

Today
- Decidable languages
- Designing deciders

Sofya Raskhodnikova
Recall

- We can encode DFAs, NFAs, regular expressions, PDAs, CFGs, etc into strings of 0s and 1s.
- We defined the following languages:
 \[A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts string } w \} \]
 \[A_{\text{NFA}} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts string } w \} \]
 \[A_{\text{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \} \]
Theorem. \(A_{\text{DFA}} \) is decidable.

Proof: The following TM \(M \) decides \(A_{\text{DFA}} \).

\(M = \)`

On input \(\langle D, w \rangle \), where \(D \) is a DFA and \(w \) is a string:

1. Check if input (to \(M \)) is legal, reject if not. (This step is assumed to be the first step of every algorithm.)
2. Simulate \(D \) on \(w \).
3. Accept if \(D \) ends in an accept state. O.w. reject.”

Corollary. \(A_{\text{NFA}} \) is decidable.

(1. Convert input NFA \(N \) to an equivalent DFA \(D \).)
Theorem. A_{CFG} is decidable.

$$A_{\text{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$$
Chomsky Normal Form for CFGs

- Can have a rule $S \rightarrow \varepsilon$.
- All remaining rules are of the form $A \rightarrow BC \quad A, B, C \in V$
 $A \rightarrow a \quad a \in \Sigma$
- Cannot have S on the RHS of any rule.

Lemma. Any CFG can be converted into an equivalent CFG in Chomsky normal form. (Proof in Sipser.)

Lemma. If G is in Chomsky normal form, any derivation of string w of length n in G has $2n - 1$ steps.
Lemma. If G is in Chomsky normal form, any derivation of string \(w \) of length \(n \) in G has \(2n - 1 \) steps.

Proof idea:

- Only rules of the form \(A \rightarrow BC \) increase the number of symbols: need to apply rules of this form \(n - 1 \) times.
- Only rules of the form \(A \rightarrow a \) replace variables with terminals: need to apply rules of this form \(n \) times.
Theorem. \(A_{\text{CFG}} \) is decidable.

\[A_{\text{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \} \]

Proof: The following TM \(M \) decides \(A_{\text{CFG}} \).

\(M = \) ``On input \(\langle G, w \rangle \), where \(G \) is a CFG and \(w \) is a string:

1. Convert \(G \) to Chomsky normal form.
2. Let \(n = |w| \).
3. Test all derivations with \(2n - 1 \) steps.
4. Accept if any derived \(w \). O.w. reject."

10/19/2017
Sofya Raskhodnikova; based on slides by Nick Hopper
Examples of decidable languages

\[A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts string } w \} \]

\[A_{\text{NFA}} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts string } w \} \]

\[A_{\text{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \} \]
Decidable languages: more examples

\[E_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a DFA that recognizes the empty language} \} \]

\[E_{\text{EQDFA}} = \{ \langle D_1, D_2 \rangle \mid D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2) \} \]

\[E_{\text{CFG}} = \{ \langle G \rangle \mid G \text{ is a CFG that generates the empty language} \} \]
Theorem. E_{DFA} is decidable.

$E_{DFA} = \{ \langle D \rangle \mid D$ is a DFA that recognizes $\emptyset.\}$

Proof: The following TM M decides E_{DFA}.

$M = \``$ On input $\langle D \rangle$, where D is a DFA:

1. Use BFS to determine if an accepting state of D is reachable from its start state.
2. Accept if not. O.w. reject."
Theorem. \(\text{EQ}_{\text{DFA}} \) is decidable.

\[\text{EQ}_{\text{DFA}} = \{ \langle D_1, D_2 \rangle \mid D_1, D_2 \text{ are DFAs} \land L(D_1) = L(D_2) \} \]

Proof: The following TM \(M \) decides \(\text{EQ}_{\text{DFA}} \).

\[M = \text{``On input } \langle D_1, D_2 \rangle, \text{ where } D_1, D_2 \text{ are DFAs:} \]

1. Construct a DFA \(D \) that recognizes the set difference of \(L(D_1) \) and \(L(D_2) \).
2. Run the decider for \(\text{E}_{\text{DFA}} \) on \(<D> \).
3. If it accepts, accept. O.w. reject.”

(on the board)
Theorem. \(E_{\text{CFG}} \) is decidable.

\[E_{\text{CFG}} = \{ \langle G \rangle \mid G \text{ is a CFG that generates no strings} \} \]

Proof: The following TM \(M \) decides \(E_{\text{CFG}} \).

\(M = \) On input \(\langle G \rangle \), where \(G \) is a CFG:

1. Mark all terminals in \(G \).
2. Repeat until no new variable is marked:
 3. Mark any variable \(A \) where \(G \) has a rule \(A \rightarrow \cdots \) and each variable/terminal on the RHS is already marked.
4. Accept if the start variable is unmarked. O.w. reject.”
Exercises

• Prove that the following language is decidable:

\[R_{DFA} = \{ \langle D, w \rangle \mid D \text{ is a DFA that rejects string } w \} \]

• Formulate the following problem as a language and prove that it is decidable:

Given a PDA and a string, determine if the PDA accepts the string.

\[A_{PDA} = \{ \langle P, w \rangle \mid P \text{ is a PDA that accepts string } w \} \]

Can a TM just simulate P on w, accept if it accepts and reject o.w.?
Exercise

A decider for A_{PDA} can, on input $<P, w>$

A. simulate P on w, accept if it accepts and reject o.w.

B. convert P to an equivalent CFG G and then run a decider for A_{CFG}, accept if it accepts and reject o.w.

C. convert P to an equivalent CFG G and then run a decider for A_{CFG}, accept if it rejects and reject o.w.

D. None of the above.

E. More than one choice above works.
Examples of decidable languages so far

\[\text{A}_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts string } w \} \]

\[\text{E}_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a DFA and } L(D) = \emptyset \} \]

\[\text{EQ}_{\text{DFA}} = \{ \langle D_1, D_2 \rangle \mid D_1, D_2 \text{ DFAs and } L(D_1) = L(D_2) \} \]

\[\text{A}_{\text{DFA}}, \text{E}_{\text{DFA}}, \text{EQ}_{\text{DFA}}, \text{A}_{\text{CFG}}, \text{E}_{\text{CFG}} \text{ are decidable.} \]
Classes of languages

- Recognizable
 - Decidable
 - CFL
 - Regular
Theorem. Every CFL is decidable.

Proof: Let G be a CFG for L. Design a TM M_G that decides L.

- Is it a good idea to convert G to an equivalent PDA P and have M_G simulate P?
Exercise

G is a CFG for L. Design a TM M_G that decides L.

Is it a good idea to convert G to an equivalent PDA P and have M_G simulate P?

A. Yes. Why not?
B. No, we can’t always convert G to an equivalent PDA.
C. No, P might loop on some inputs.
D. No, because we don’t have any input to run P on.
E. None of the above.
Exercise

G is a CFG for L. Design a TM M_G that decides L.

A decider for which language is useful as a subroutine?

A. for A_{DFA}
B. for E_{DFA}
C. for EQ_{DFA}
D. for A_{CFG}
E. for E_{CFG}
Theorem. Every CFL is decidable.

Proof: Let G be a CFG for L. Design a TM M_G that decides L.

• Is it a good idea to convert G to an equivalent PDA P and have M_G simulate P?

$M = \text{`` On input } w:\n$ 1. Run the decider for A_{CFG} on input $<G,w>$.
2. Accept if yes. O.w. reject.”
Classes of languages

- Recognizable
- Decidable
- CFL
- Regular
Theorem. $\text{INFINITE}_{\text{DFA}}$ is decidable.

$\text{INFINITE}_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a DFA and } L(D) \text{ is infinite} \}$

Idea: Let n be the number of states in D. $L(D)$ is infinite iff D accepts a string of length $\geq n$.

Proof: The following TM M decides $\text{INFINITE}_{\text{DFA}}$.

$M = \langle D \rangle$, where D is a DFA:

1. Let n be the number of states in D.
2. Let C be a DFA for $\{w \mid |w| \geq n\}$.
3. Build a DFA B for $L(C) \cap L(D)$.
4. Run a decider for E_{DFA} on $\langle B \rangle$.
5. Accept if it rejects. O.w. reject.”
Theorem. PAL_{DFA} is decidable.

• Formulate the following problem as a language and prove that it is decidable:

Given a DFA, determine if it accepts some palindrome.
Problems in language theory

<table>
<thead>
<tr>
<th>A_{DFA}</th>
<th>A_{CFG}</th>
<th>A_{TM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>decidable</td>
<td>decidable</td>
<td>?</td>
</tr>
<tr>
<td>E_{DFA}</td>
<td>E_{CFG}</td>
<td>E_{TM}</td>
</tr>
<tr>
<td>decidable</td>
<td>decidable</td>
<td>?</td>
</tr>
<tr>
<td>EQ_{DFA}</td>
<td>EQ_{CFG}</td>
<td>EQ_{TM}</td>
</tr>
<tr>
<td>decidable</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>