Intro to Theory of Computation

LECTURE 14

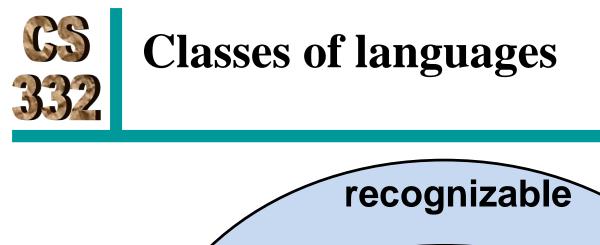
Last time

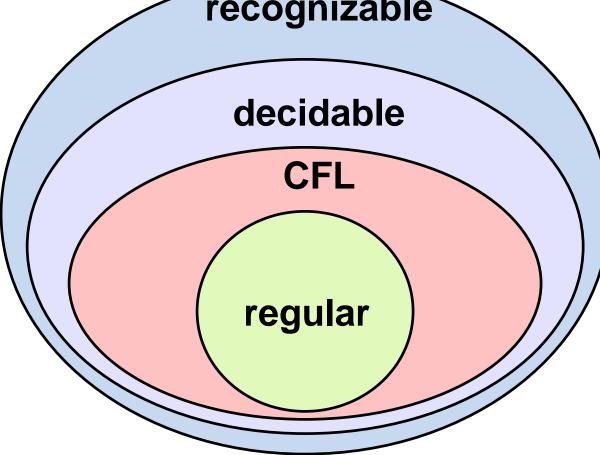
- Decidable languages
- Designing deciders Today
- Undecidable languages

L141

Diagonalization

Sofya Raskhodnikova





CS Problems in language theory

A _{DFA}	A _{CFG}	A _{TM}
decidable	decidable	?
E _{DFA}	E _{CFG}	E _{TM}
decidable	decidable	?
EQ _{DFA} decidable	EQ _{CFG} ?	EQ _{TM} ?

We will prove that there are some undecidable languages:

• i.e., problems a computer cannot solve no matter how long it computes

The proof idea is "simple:"

There are more languages than there are Turing Machines.

there is no TM that decides L.

- If L is undecidable, then every TM must either:
 - **1. Accept (infinitely many) strings s ∉ L.**
 - 2. Reject (infinitely many) strings $s \in L$.
 - 3. Loop forever on (infinitely many) strings.

POP QUIZ

Let $\mathbb{N} = \{1, 2, ...\}$ be the natural numbers.

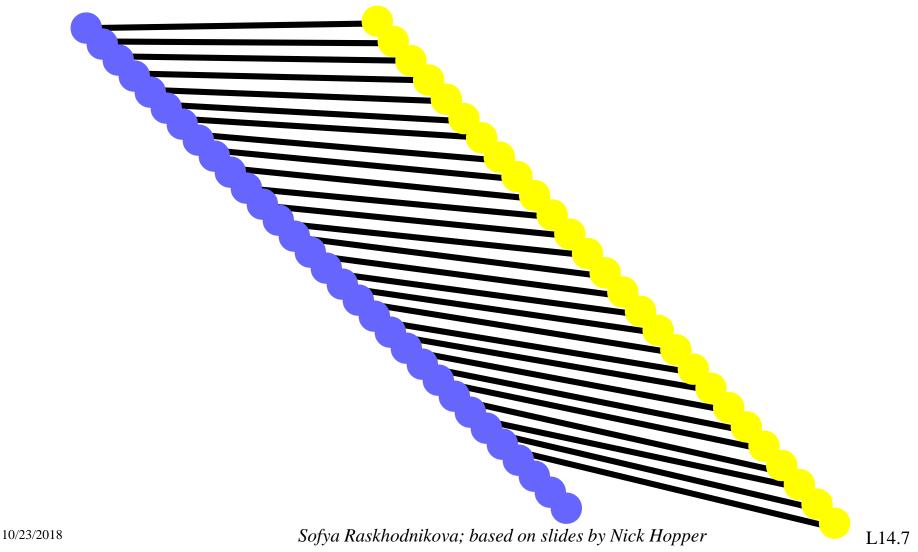
Let E = {2,4,6,...} be the even natural numbers.

Let $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ be the integers.

Which one is largest?

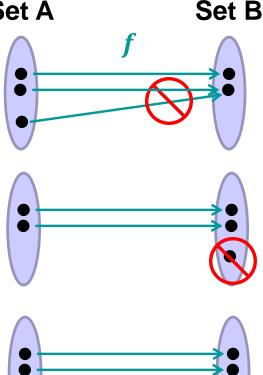
- **A**. ℕ
- B. E
- **C.** Z

D. the same size.



Set Theory 101

Set A



- A function $f: A \to B$ is
 - **1-to-1** (or *injective*) if $f(a) \neq f(b)$ for $a \neq b$.
 - onto (or surjective) if for all $b \in B$, some $a \in A$ maps to b: f(a) = b.
 - *correspondence* (or *bijective*) if
 - it is 1-to-1 and onto, i.e.,
 - each $a \in A$ maps to a unique $b \in B$, and each $b \in B$ has a unique $a \in A$ mapping to it.

How to compare sizes of infinite sets?

- Two sets are **the same size** if there is a bijection between them.
- A set is **countable** if it is
 - finite or
 - it has the same size as \mathbb{N} , the set of natural numbers

Examples of countable sets

Ø, {0}, {0,1}, {0,1, ..., 255} E = {2,4,6,...} O = {1,3,5,7,...} SQUARES = {1,4,9,16,25...} POWERS = {1,2,4,8,16,32...}

|POWERS| = |SQUARES| = |E| = |O| = |ℕ|

There is a bijection between \mathbb{N} and $\mathbb{N} \times \mathbb{N}$.

$$(0,6)$$
 $(0,1)$ $(0,2)$ $(0,2)$ $(0,4)$... $(1,0)$ $(1,1)$ $(1,2)$ $(1,3)$ $(1,4)$... $(2,5)$ $(2,1)$ $(2,2)$ $(2,3)$ $(2,4)$... $(3,0)$ $(3,1)$ $(3,2)$ $(3,3)$ $(3,4)$... $(4,5)$ $(4,1)$ $(4,2)$ $(4,3)$ $(4,4)$...

10/23/2018

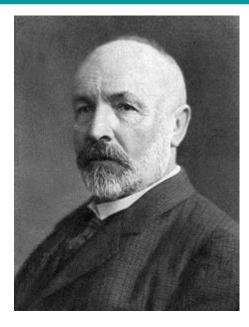
{0,1}* is countable

{ < M > | M is a TM } is countable

$Q^+= \{ p/q \mid p,q \in Z^+ \}$ is countable!

Is any set *uncountable?*

Creator of Set Theory



Georg Cantor 1845--1918

Theorem. There is no bijection from the positive integers to the real interval (0,1)

Proof: Suppose f is such a function:

n	f(n)
1	0. <mark>2</mark> 8347279
2	0.88388384
3	0.77 <mark>6</mark> 35284
4	0.111 <mark>1</mark> 1111
5	0.1234 <mark>5</mark> 678
•	

Construct $b \in (0, 1)$ that does not appear in the table. **b=0.** $d_1d_2d_3 \dots$, where $d_i \neq \text{digit } i \text{ of } f(i)$.

The process of constructing a counterexample by "contradicting the diagonal" is called DIAGONALIZATION

What if we try this argument on \mathbb{Q} instead of \mathbb{R} ?

Proof: Suppose f is such a function:

n	f(n)
1	0. 2 8347279
2	0.88388384
3	0.77 <mark>6</mark> 35284
4	0.111 <mark>1</mark> 1111
5	0.1234 <mark>5</mark> 678
-	-

Construct $b \in (0, 1)$ that does not appear in the table. **b=0.** $d_1d_2d_3 \dots$, where $d_i \neq \text{digit } i \text{ of } f(i)$.

What if we try Cantor's diagonalization argument on \mathbb{Q} instead of \mathbb{R} ?

- A. It works.
- **B**. It fails because there are some rational numbers that cannot be represented in decimal point notation.
- **C**. It fails because the *i*-th number might have no digit in the *i*-th position after the decimal point.
- **D**. It fails because the constructed number is not rational.
- E. None of the above.

Theorem: There is no bijection from L to P(L) **Proof:** Assume, for a contradiction, that there is bijection $f : L \rightarrow P(L)$

We construct a set S that cannot be the output, f(y), for any $y \in L$.

Use diagonalization

x	y ₁ ∈f(x)?	y₂∈f(x)?	y ₃ ∈ f(x)?	y₄ ∈ f(x)?	
y ₁	Y	Ν	Y	Y	
y ₂	Ν	Y	Ν	Y	
y ₃	Ν	Ν	Ν	Ν	
y ₄	Υ	Ν	Ν	Y	
•					•••

Define set S by flipping the diagonal: $(y_i \in S) = Y$ iff $(y_i \in f(y_i)) = N$

Let L = $\{0,1,2\}$. Then P(L) = $\{\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}\}$

Let $f(0) = \{1\}, f(1) = \emptyset, f(2) = \{0,2\}$. Then:

X	0 ∈ f(x)?	1 ∈ f(x)?	2 ∈ f(x)?	
0	Ν	Y	Ν	
1	Ν	N N		
2	Υ	Ν	Y	

 $S = \{0,1\}$

Theorem: There is no bijection from L to P(L) **Proof:** Assume, for a contradiction, that there is bijection $f : L \rightarrow P(L)$

We construct a set S that cannot be the output, f(y), for any $y \in L$.

Let
$$S = \{ x \in L \mid x \notin f(x) \}$$

If S = f(y) then $y \in S$ if and only if $y \notin S$

For all sets L, P(L) has more elements than L

TM Deciders

Strings of 0s and 1s

Languages over {0,1} Sets of strings of 0s and 1s

P(L)

Turing Machines

Strings of 0s and 1s

Languages over {0,1} Sets of strings of 0s and 1s

P(L)

A specific undecidable language

$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM, w is a string,} \\ and M \text{ accepts w } \}$

Proof: For contradiction, suppose a TM H decides A_{TM} . $H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ doesn't accept } w \end{cases}$

Idea: Use *H* to check what TM *M* does on its own description (and do the opposite).

- **TM D** = `` On input $\langle M \rangle$, where *M* is a TM:
 - **1.** Run *H* on input $\langle M \rangle >$.
 - 2. Accept if it rejects. O.w. reject."

D is a decider. What does it do on $\langle D \rangle$?

CS Is it diagonalization again? 332 Does Maccept (M)?

TMs	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	
M_1	Y	Ν	Υ	Y	
<i>M</i> ₂	Ν	Y	Ν	Y	
<i>M</i> ₃	Ν	Ν	N	Ν	
<i>M</i> ₄	Y	Ν	Ν	Y	
•					••••

D accepts $\langle M_i \rangle$ iff entry (i, i) is **N**.

CS Is it diagonalization again? 332 Does Maccept (M)?

TMs	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	••••	$\langle D \rangle$	••••
<i>M</i> ₁	Y	Ν	Y	Y			
<i>M</i> ₂	Ν	Y	Ν	Υ			
M ₃	Ν	Ν	N	Ν			
<i>M</i> ₄	Y	Ν	Ν	Y			
•					•••		
D						?	
•							•

https://www.youtube.com/watch?v=92WHN-pAFCs