Lecture 14

Last time
• Decidable languages
• Designing deciders

Today
• Undecidable languages
• Diagonalization

Sofya Raskhodnikova
Classes of languages

- Regular languages
 - Decidable
 - Recognizable
 - Context-free languages (CFL)
 - Regular languages
Problems in language theory

<table>
<thead>
<tr>
<th>A_{DFA} decidable</th>
<th>A_{CFG} decidable</th>
<th>A_{TM} ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{DFA} decidable</td>
<td>E_{CFG} decidable</td>
<td>E_{TM} ?</td>
</tr>
<tr>
<td>EQ_{DFA} decidable</td>
<td>EQ_{CFG} ?</td>
<td>EQ_{TM} ?</td>
</tr>
</tbody>
</table>
Undecidability

We will prove that there are some undecidable languages:

• i.e., problems a computer cannot solve no matter how long it computes

The proof idea is “simple:”

There are more languages than there are Turing Machines.
A language L is **undecidable** if there is no TM that decides L.

If L is undecidable, then every TM must either:

1. Accept (infinitely many) strings $s \notin L$.
2. Reject (infinitely many) strings $s \in L$.
3. Loop forever on (infinitely many) strings.
Let $\mathbb{N} = \{1,2,\ldots\}$ be the natural numbers.
Let $E = \{2,4,6,\ldots\}$ be the even natural numbers.
Let $\mathbb{Z} = \{\ldots,-2,-1,0,1,2,\ldots\}$ be the integers.

Which one is largest?

A. \mathbb{N}
B. E
C. \mathbb{Z}
D. the same size.
Are there more blue or yellow dots?
A function $f : A \rightarrow B$ is

- **1-to-1** (or **injective**) if
 \[f(a) \neq f(b) \text{ for } a \neq b.\]

- **onto** (or **surjective**) if for all $b \in B$, some $a \in A$ maps to b: $f(a) = b$.

- **correspondence** (or **bijective**) if
 it is 1-to-1 and onto, i.e., each $a \in A$ maps to a unique $b \in B$, and each $b \in B$ has a unique $a \in A$ mapping to it.
How to compare sizes of infinite sets?

• Two sets are **the same size** if there is a bijection between them.

• A set is **countable** if it is
 – finite or
 – it has the same size as \(\mathbb{N} \), the set of natural numbers
Examples of countable sets

\[\emptyset, \{0\}, \{0,1\}, \{0,1, \ldots, 255\} \]
\[E = \{2,4,6,\ldots\} \]
\[O = \{1,3,5,7,\ldots\} \]
\[\text{SQUARES} = \{1,4,9,16,25\ldots\} \]
\[\text{POWERS} = \{1,2,4,8,16,32\ldots\} \]

\[|\text{POWERS}| = |\text{SQUARES}| = |E| = |O| = |\mathbb{N}| \]
There is a bijection between \mathbb{N} and $\mathbb{N} \times \mathbb{N}$.

(0,0) (0,1) (0,2) (0,3) (0,4) ...

(1,0) (1,1) (1,2) (1,3) (1,4) ...

(2,0) (2,1) (2,2) (2,3) (2,4) ...

(3,0) (3,1) (3,2) (3,3) (3,4) ...

(4,0) (4,1) (4,2) (4,3) (4,4) ...
{0,1}* is countable

\{ \langle M \rangle \mid M \text{ is a TM} \} \text{ is countable}

Q^+ = \{ \frac{p}{q} \mid p, q \in \mathbb{Z}^+ \} \text{ is countable!}

Is any set \textit{uncountable}?
Creator of Set Theory

Georg Cantor
1845--1918
Theorem. There is no bijection from the positive integers to the real interval (0,1).

Proof: Suppose f is such a function:

<table>
<thead>
<tr>
<th>n</th>
<th>f(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.28347279…</td>
</tr>
<tr>
<td>2</td>
<td>0.88388384…</td>
</tr>
<tr>
<td>3</td>
<td>0.77635284…</td>
</tr>
<tr>
<td>4</td>
<td>0.11111111…</td>
</tr>
<tr>
<td>5</td>
<td>0.12345678…</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Construct \(b \in (0,1) \) that does not appear in the table. \(b = 0.d_1d_2d_3 \ldots \), where \(d_i \neq \text{digit } i \text{ of } f(i) \).
The process of constructing a counterexample by “contradicting the diagonal” is called **DIAGONALIZATION**
What if we try this argument on \mathbb{Q} instead of \mathbb{R}?

Proof: Suppose f is such a function:

<table>
<thead>
<tr>
<th>n</th>
<th>$f(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.28347279…</td>
</tr>
<tr>
<td>2</td>
<td>0.88388384…</td>
</tr>
<tr>
<td>3</td>
<td>0.77635284…</td>
</tr>
<tr>
<td>4</td>
<td>0.11111111…</td>
</tr>
<tr>
<td>5</td>
<td>0.12345678…</td>
</tr>
</tbody>
</table>

Construct $b \in (0, 1)$ that does not appear in the table.

$b = 0.d_1d_2d_3\ldots$, where $d_i \neq \text{digit } i \text{ of } f(i)$.

Sofya Raskhodnikova; based on slides by Nick Hopper

10/24/2017
Exercise

What if we try Cantor’s diagonalization argument on \mathbb{Q} instead of \mathbb{R}?

A. It works.

B. It fails because there are some rational numbers that cannot be represented in decimal point notation.

C. It fails because the i-th number might have no digit in the i-th position after the decimal point.

D. It fails because the constructed number is not rational.

E. None of the above.
Let L be any set and $P(L)$ be the power set of L

Theorem: There is no bijection from L to $P(L)$

Proof: Assume, for a contradiction, that there is bijection $f : L \rightarrow P(L)$

We construct a set S that cannot be the output, $f(y)$, for any $y \in L$.

Let $S = \{ x \in L \mid x \notin f(x) \}$

If $S = f(y)$ then $y \in S$ if and only if $y \notin S$
How is it diagonalization?

<table>
<thead>
<tr>
<th>x</th>
<th>$y_1 \in f(x)$?</th>
<th>$y_2 \in f(x)$?</th>
<th>$y_3 \in f(x)$?</th>
<th>$y_4 \in f(x)$?</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_1</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>y_2</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>y_3</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>y_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$(y_i \in S) = Y$ iff $(y_i \in f(y_i)) = N$
Let $L = \{0,1,2\}$. Then $P(L) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}\}$

Let $f(0) = \{1\}$, $f(1) = \emptyset$, $f(2) = \{0,2\}$. Then:

<table>
<thead>
<tr>
<th>x</th>
<th>$0 \in f(x)$?</th>
<th>$1 \in f(x)$?</th>
<th>$2 \in f(x)$?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

$S = \{0,1\}$
For all sets \(L \),
\(P(L) \) has more elements than \(L \)
Not all languages over \{0,1\} are decidable

TM Deciders

- Strings of 0s and 1s

Languages over \{0,1\}

- Sets of strings of 0s and 1s

\(L \)

\(P(L) \)
Not all languages over \{0,1\} are **recognizable**

Turing Machines

Strings of 0s and 1s

\[L \]

Languages over \{0,1\}

Sets of strings of 0s and 1s

\[P(L) \]
A specific undecidable language

$$A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM, } w \text{ is a string, and } M \text{ accepts } w \}$$
Theorem. A_{TM} is undecidable.

Proof: For contradiction, suppose a TM H decides A_{TM}.

$$H(<M, w>) = \begin{cases}
\text{accept} & \text{if } M \text{ accepts } w \\
\text{reject} & \text{if } M \text{ doesn't accept } w
\end{cases}$$

Idea: Use H to check what TM M does on its own description (and do the opposite).

TM D

```
On input $<M>$, where $M$ is a TM:
1. Run $H$ on input $<M, <M>>$.
2. Accept if it rejects. O.w. reject.
```

D is a decider. What does it do on $<D>$?

Sofya Raskhodnikova; based on slides by Nick Hopper
Is it diagonalization again?
Does M accept $\langle M \rangle$?

<table>
<thead>
<tr>
<th>TMs</th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>M_2</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>M_3</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>M_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

D accepts $\langle M_i \rangle$ iff entry (i, j) is N.
Is it diagonalization again? Does M accept $\langle M \rangle$?

<table>
<thead>
<tr>
<th>TMs</th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>...</th>
<th>$\langle D \rangle$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_3</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

10/24/2017

Sofya Raskhodnikova; based on slides by Nick Hopper
A movie about undecidability of the Halting Problem

https://www.youtube.com/watch?v=92WHN-pAFCs