Intro to Theory of Computation

LECTURE 16 Last time

- $\overline{A_{TM}}$ is unrecognizable
- Reductions
- Today
- Reductions
- Mapping reductions

Sofya Raskhodnikova

CS Problems in language theory

A _{DFA}	A _{CFG}	A _{TM}
decidable	decidable	undecidable
E _{DFA}	E _{CFG}	E _{TM}
decidable	decidable	undecidable
EQ _{DFA}	EQ _{CFG}	EQ _{TM}
decidable	?	?

We want to prove that language L is undecidable.

Idea: Use a proof by contradiction.

- 1. Suppose to the contrary that L is decidable.
- 2. Use a decider for L as a subroutine to construct a decider for A_{TM}.
- 3. But A_{TM} is undecidable. Contradiction!

To prove that \boldsymbol{E}_{TM} is undecidable

- A. we assumed E_{TM} had a decider and used it to construct a decider for A_{TM}
- **B.** we assumed A_{TM} had a decider and used it to construct a decider for E_{TM}
- **C.** we constructed a TM *S* that on input $\langle M, w \rangle$ decides whether *M* accepts *w*, assuming the existence of a TM *R* that decides on input $\langle M' \rangle$ whether the language of $\langle M' \rangle$ is empty
- **D.** There is more than one correct answer.
- **E.** None of the above.

Prove that $\mathbf{EQ}_{\mathsf{TM}}$ is undecidable

 $\mathbf{EQ}_{\mathrm{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs, } L(M_1) = L(M_2) \}$

Proof: Suppose to the contrary that EQ_{TM} is decidable, and let R be a TM that decides it. We construct TM S that decides A_{TM} .

S = `` On input $\langle M, w \rangle$, where *M* is a TM and *w* is a string:

1. Construct TMs M', M''.

Proof 2 that \mathbf{EQ}_{\mathsf{TM}} is undecidable

 $\mathbf{EQ}_{\mathrm{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs, } L(M_1) = L(M_2) \}$

Proof: Suppose to the contrary that EQ_{TM} is decidable, and let R be a TM that decides it. We construct TM S that decides E_{TM} . What do we change?

S = `` On input $\langle M \rangle$, where *M* is a TM and *w* is a string:

CS Problems in language theory

A _{DFA}	A _{CFG}	A _{TM}
decidable	decidable	undecidable
E _{DFA}	E _{CFG}	E _{TM}
decidable	decidable	undecidable
EQ _{DFA} decidable	EQ _{CFG}	EQ _{TM} undecidable

Mapping Reductions

Computable functions

A function $f: \Sigma^* \to \Sigma^*$ is computable if some TM M, on every input *w*, halts with only f(w) on its tape.

Example 1:
$$f(\langle x, y \rangle) = x + y$$
.

Example 2: $f(\langle M, w \rangle) = \langle M' \rangle$, where *M* is a TM and *w* is a string, and *M'* is a TM that ignores its input and runs *M* on *w*.

Mapping reductions

Given languages A and B, $A \leq_m B$ if there is a computable function f, such that for all strings w, $w \in A$ iff $f(w) \in B$.

If $\overline{A} \leq_m \overline{B}$, we can conclude that

- **A.** $A \leq_m B$
- **B.** $B \leq_m A$
- **C.** $\overline{\mathbf{A}} \leq_m B$
- **D.** $\overline{\mathbf{B}} \leq_m A$
- **E.** None of the above.

Theorem. If $A \leq_m B$ and B is decidable, then A is decidable.

Proof: Let *M* be a decider for *B* and *f* be a mapping reduction from A to B. Construct a decider for A:

``On input w:

- 1. Compute f(w).
- 2. Run M on f(w).
- 3. If it accepts, accept. O.w. reject."

Theorem. If $A \leq_m B$ and B is decidable, then A is decidable.

Corollary. If $A \leq_m B$ and A is undecidable, then B is undecidable.

Example: If $A_{TM} \leq_m B$, then B is undecidable.

Theorem. If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable.

Proof: Let *M* be a TM that recognizes *B* and *f* be a mapping reduction from A to B. Construct a TM that recognizes A: ``On input w:

- 1. Compute f(w).
- 2. Run M on f(w).
- 3. If it accepts, accept. O.w. reject."

CS Using mapping reductions to 332 prove unrecognizability

Theorem. If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable.

Corollary. If $A \leq_m B$ and A is **unrecognizable**, then B is **unrecognizable**.

Example: If $\overline{\mathbf{A}_{\mathrm{TM}}} \leq_m \mathbf{B}$, then **B** is unrecognizable.

 $\mathbf{EQ}_{\mathrm{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs, } L(M_1) = L(M_2) \}$

Proof: Suppose to the contrary that EQ_{TM} is decidable, and let R be a TM that decides it. We construct TM S that decides A_{TM} .

S = `` On input $\langle M, w \rangle$, where *M* is a TM and *w* is a string:

- 1. Construct TMs M', M''.
 - M' = On input *x*,
 - 1. Ignore the input.
 - 2. Run TM *M* on input w.
 - 3. If it accepts, accept."
- 2. Run TM *R* on input $\langle M' \rangle$.
- 3. If it accepts, accept. O.w. reject."

Proof: The following TM computes the reduction:

F = `` On input $\langle M, w \rangle$, where *M* is a TM and *w* is a string:

- 1. Construct TMs M', M''.
 - M' = On input *x*,
 - 1. Ignore the input.
 - 2. Run TM *M* on input w.
 - 3. If it accepts, accept."

$$M'' = ``Accept."$$

2. Output <*M*′, *M*′′>."

Conclusions from $A_{TM} \leq_m EQ_{TM}$

1. Since A_{TM} is undecidable, so is EQ_{TM}

2. $\overline{A_{TM}} \leq_m \overline{EQ_{TM}}$ Since $\overline{A_{TM}}$ is unrecognizable, so is $\overline{EQ_{TM}}$

Prove that $\mathbf{EQ}_{\mathsf{TM}}$ is unrecognizable

Proof: We give a mapping reduction $\overline{A_{TM}} \leq_m EQ_{TM}$ The following TM computes the reduction:

F = `` On input $\langle M, w \rangle$, where *M* is a TM and *w* is a string:

CS Problems in language theory

A _{DFA}	A _{CFG}	A _{TM}
decidable	decidable	undecidable
E _{DFA}	E _{CFG}	E _{TM}
decidable	decidable	undecidable
EQ _{DFA} decidable	EQ _{CFG} ?	EQ _{TM} undecidable