Last time
• A_{TM} is unrecognizable
• Reductions

Today
• Reductions
• Mapping reductions

Sofya Raskhodnikova
Problems in language theory

<table>
<thead>
<tr>
<th>Problem Type</th>
<th>DFA</th>
<th>CFG</th>
<th>TM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptance</td>
<td>Decidable</td>
<td>Decidable</td>
<td>Undecidable</td>
</tr>
<tr>
<td>Equivalence</td>
<td>Decidable</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
We want to prove that language L is undecidable.

Idea: Use a proof by contradiction.

1. Suppose to the contrary that L is decidable.
2. Use a decider for L as a subroutine to construct a decider for A_{TM}.
3. But A_{TM} is undecidable. Contradiction!
Exercise

To prove that E_{TM} is undecidable

A. we assumed E_{TM} had a decider and used it to construct a decider for A_{TM}

B. we assumed A_{TM} had a decider and used it to construct a decider for E_{TM}

C. we constructed a TM S that on input $<M, w>$ decides whether M accepts w, assuming the existence of a TM R that decides on input $<M'>$ whether the language of $<M'>$ is empty

D. There is more than one correct answer.

E. None of the above.
Prove that EQ_{TM} is undecidable

$\text{EQ}_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs, } L(M_1) = L(M_2) \}$

Proof: Suppose to the contrary that EQ_{TM} is decidable, and let R be a TM that decides it. We construct TM S that decides A_{TM}.

$S = \text{``On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ is a string:} \text{''}$

$M' = \text{``On input } x, \text{''}$
1. Ignore the input.
2. Run TM M on input w.
3. If it accepts, accept.”

$M'' = \text{``Accept.”}$$

2. Run TM R on input $<M', M''>$.

3. If it accepts, accept. O.w. reject.”
Proof 2 that \(\text{EQ}_{\text{TM}} \) is undecidable

\[\text{EQ}_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs, } L(M_1) = L(M_2) \} \]

Proof: Suppose to the contrary that \(\text{EQ}_{\text{TM}} \) is decidable, and let \(R \) be a TM that decides it. We construct TM \(S \) that decides \(E_{\text{TM}} \). What do we change?

\[S = \text{``On input } \langle M, w \rangle \text{, where } M \text{ is a TM and } w \text{ is a string:} \]

1. Construct TM \(M' \).

\[M' = \text{``Reject.''} \]
 1. Ignore the input.
 2. Run TM \(M \) on input \(w \).
 3. If it accepts, accept.

2. Run TM \(R \) on input \(\langle M, M' \rangle \).

3. If it accepts, accept. O.w. reject.
Problems in language theory

<table>
<thead>
<tr>
<th>A_{DFA}</th>
<th>A_{CFG}</th>
<th>A_{TM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>decidable</td>
<td>decidable</td>
<td>undecidable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_{DFA}</th>
<th>E_{CFG}</th>
<th>E_{TM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>decidable</td>
<td>decidable</td>
<td>undecidable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EQ_{DFA}</th>
<th>EQ_{CFG}</th>
<th>EQ_{TM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>decidable</td>
<td>?</td>
<td>undecidable</td>
</tr>
</tbody>
</table>
Proving undecidability and unrecognizability

Mapping Reductions
A function $f : \Sigma^* \rightarrow \Sigma^*$ is **computable** if some TM M, on every input w, halts with only $f(w)$ on its tape.

Example 1: $f(\langle x, y \rangle) = x + y$.

Example 2: $f(\langle M, w \rangle) = \langle M' \rangle$, where M is a TM and w is a string, and M' is a TM that ignore its input and runs M on w.
Given languages A and B,

\[A \leq_m B \]

if there is a computable function \(f \), such that for all strings \(w \),

\[w \in A \text{ iff } f(w) \in B. \]
If $\bar{A} \leq_m \bar{B}$, we can conclude that

A. $A \leq_m B$
B. $B \leq_m A$
C. $\bar{A} \leq_m B$
D. $\bar{B} \leq_m A$
E. None of the above.
Theorem. If $A \leq_m B$ and B is decidable, then A is decidable.

Proof: Let M be a decider for B and f be a mapping reduction from A to B. Construct a decider for A:

```
``\`On input $w$:
1. Compute $f(w)$.
2. Run $M$ on $f(w)$.
3. If it accepts, **accept**. O.w. **reject**.
```
Using mapping reductions to prove **undecidability**

Theorem. If $A \leq_m B$ and B is decidable, then A is decidable.

Corollary. If $A \leq_m B$ and A is **undecidable**, then B is **undecidable**.

Example: If $A_{TM} \leq_m B$, then B is **undecidable**.
Theorem. If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable.

Proof: Let M be a TM that recognizes B and f be a mapping reduction from A to B. Construct a TM that recognizes A:
```
On input $w$:
1. Compute $f(w)$.
2. Run $M$ on $f(w)$.
3. If it accepts, accept. O.w. reject."
```
Using mapping reductions to prove unrecognizability

Theorem. If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable.

Corollary. If $A \leq_m B$ and A is unrecognizable, then B is unrecognizable.

Example: If $\overline{A_{TM}} \leq_m B$, then B is unrecognizable.
Old proof that EQ_{TM} is undecidable

$\text{EQ}_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs, } L(M_1) = L(M_2) \}$

Proof: Suppose to the contrary that EQ_{TM} is decidable, and let R be a TM that decides it.

We construct TM S that decides A_{TM}.

$S = \text{`` On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ is a string:}''$

 - $M' = \text{`` On input } x,
 1. \text{ Ignore the input.}
 2. \text{ Run TM } M \text{ on input } w.$
 3. \text{ If it accepts, accept.''}$
 - $M'' = \text{`` Accept.''}$

2. Run TM R on input $\langle M', M'' \rangle$.

3. If it accepts, accept. O.w. reject.''}
Proof: The following TM computes the reduction:

\[F = \text{``On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ is a string:} \]

1. Construct TMs \(M', M'' \).
 \[M' = \text{``On input } x, \]
 1. Ignore the input.
 2. Run TM \(M \) on input \(w \).
 3. If it accepts, accept.”

2. Output \(<M', M''> \).”

\[A_{\text{TM}} \leq^m \text{EQ}_{\text{TM}} \]
Conclusions from $A_{TM} \leq_m EQ_{TM}$

1. Since A_{TM} is undecidable, so is EQ_{TM}

2. $A_{TM} \leq_m EQ_{TM}$
 Since A_{TM} is unrecognizable, so is EQ_{TM}
Prove that EQ_{TM} is unrecognizable

Proof: We give a mapping reduction $A_{TM} \leq_m EQ_{TM}$

The following TM computes the reduction:

$F = \text{``On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ is a string:}$$

 $M' = \text{``On input } x,$
 1. Ignore the input.
 2. Run TM M on input w.
 3. If it accepts, accept.''

2. Output $\langle M', M'' \rangle$.

$A_{TM} \xrightarrow{f} EQ_{TM}$
Problems in language theory

<table>
<thead>
<tr>
<th></th>
<th>A_DFA decidable</th>
<th>A_CFG decidable</th>
<th>A_TM undecidable</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E)</td>
<td>(E)_DFA decidable</td>
<td>(E)_CFG decidable</td>
<td>(E)_TM undecidable</td>
</tr>
<tr>
<td>(EQ)</td>
<td>(EQ)_DFA decidable</td>
<td>(EQ)_CFG ?</td>
<td>(EQ)_TM undecidable</td>
</tr>
</tbody>
</table>