Intro to Theory of Computation

LECTURE 17 Last time

- Daduation
- Reductions
- Mapping reductions **Today**
- Computation history method

Sofya Raskhodnikova

A language L is Turing-recognizable \Leftrightarrow L $\leq_m A_{TM}$

- **A.** Only the \Rightarrow direction is true.
- **B.** Only the \Leftarrow direction is true.
- **C.** Both directions are true.
- **D.** Neither direction is true.

CS Problems in language theory

A _{DFA}	A _{CFG}	A _{TM}		
decidable	decidable	undecidable		
E _{DFA}	E _{CFG}	E _{TM}		
decidable	decidable	undecidable		
EQ _{DFA} decidable	EQ _{CFG} ?	EQ _{TM} undecidable		

Computation history method

A linear bounded automaton (LBA)

A linear bounded automaton (LBA) is a TM variant that has bounded tape, with the number of tape squares equal to the size of the input.

A **configuration** of an LBA is a setting of state, head position and tape contents.

How many distinct configurations does an LBA have if it has q states, g symbols in tape alphabet, and the tape of length n?

- A. qgn
- **B.** q + g + n
- **C.** qg^n
- **D.** qng^n
- **E.** None of the above.

Prove that A_{LBA} is decidable

 $A_{LBA} = \{\langle B, w \rangle \mid B \text{ is an LBA that accepts string } w \}$ Idea: Given $\langle B, w \rangle$, simulate B on w. If it halts, we know the answer. If it loops, we can detect because B repeats a configuration.

S = `` On input $\langle B, w \rangle$, where *B* is an LBA and *w* is a string:

- 1. Simulate B on w for qng^n steps.
- 2. If it accepts, accept.
- 3. If it rejects or does not halt, reject."

Computation history

An accepting computation history for a TM M on input w is a sequence of configurations entered by M on input w:

Starting configuration

CS Accepting configuration

$$C_{\ell} = \dots \langle q_{acc} \rangle \dots$$

Each C_{i+1} legally follows from C_i

LBAs can check computation histories of TMs

Given a TM M and a string w, we can construct an LBA that checks whether its input is the accepting computation history of M on w.

Prove that E_{LBA} **is undecidable**

 $\mathbf{E}_{\mathbf{LBA}} = \{ \langle B \rangle \mid B \text{ is a LBA and } L(B) = \emptyset \}$

Proof: Suppose to the contrary that TM R decides E_{LBA} . We construct TM S that decides A_{TM} .

S = `` On input $\langle M, w \rangle$, where *M* is a TM and *w* is a string:

1. Construct an LBA *B* from *M* and *w*:

B = `` On input x,Accept if $x = C_0 # \dots #C_\ell$ is the accepting
computation history of M on w:

- 1. C_0 is the starting configuration of *M* on *w*
- **2.** Each C_{i+1} legally follows from C_i
- 3. C_{ℓ} is an accepting configuration for *M* "
- 2. Run TM R on input $\langle B \rangle$.
- 3. If it rejects , accept. O.w. reject."

ALL_{PDA} = { $\langle P \rangle | P$ is a PDA that accepts all strings }

- We can use the computation history method to show that ALL_{PDA} is undecidable.
- It follows that ALL_{CFG} is undecidable.
- It follows that EQ_{CFG} is undecidable.

CS Problems in language theory

A _{DFA}	A _{CFG}	A _{TM}		
decidable	decidable	undecidable		
E _{DFA}	E _{CFG}	E _{TM}		
decidable	decidable	undecidable		
EQ _{DFA}	EQ _{CFG}	EQ _{TM}		
decidable	undecidable	undecidable		

CS Post Correspondence Problem

Domino: $\left|\frac{a}{ab}\right|$. Top and bottom are strings. Input: collection of dominos.

Match: list of some of the input dominos (repetitions allowed) with top = bottom

 $\left|\frac{ab}{aba}\right|, \left[\frac{aa}{aba}\right], \left|\frac{ba}{aa}\right|, \left[\frac{aa}{aba}\right], \left[\frac{abab}{b}\right]$ **Problem:** determine if a match exists. **POST={input with a match} is undecidable.**

A two-dimensional automaton (2DIM-DFA) takes an $m \times n$ rectangle as input, for any $m, n \ge 2$. The boundary squares contain #; internal squares contain symbols from alphabet Σ . The transition function $\delta: Q \times (\Sigma \cup \{\#\}) \rightarrow Q \times \{L, R, U, D\}$ indicates the next state and head movement (left, right, up, down). How many distinct configurations does a 2DIM-DFA have on a given input?

A.
$$(m-2)(n-2)|Q|$$

- **B.** mn|Q|
- **C.** $mn|Q| \cdot |\Sigma|$
- **D.** $mn|Q| \cdot |\Sigma|^{(m-2)(n-2)}$
- **E.** None of the above.

#	#	#	#	#	#	#
#	0	0	1	0	0	#
#	0	1	1	1	0	#
#	0	1	1	1	1	#
#	0	0	1	0	1	#
#	#	#	#	#	#	#

Let $A_{2DIM-DFA} = \{ \langle D, x \rangle \mid D \text{ is a } 2DIM-DFA \text{ and } D \text{ accepts } x \}$

- 1. Can a 2DIM-DFA loop?
- 2. Is A_{2DIM-DFA} decidable?
- A. YES to both.
- **B.** NO to both.
- **C.** YES to 1, NO to 2.
- **D.** NO to 1, YES to 2.