Intro to Theory of Computation

Lecture 17
Last time

- Reductions
- Mapping reductions

Today

- Computation history method

Sofya Raskhodnikova

Exercise

A language L is Turing-recognizable \Leftrightarrow $\mathbf{L} \leq_{m} A_{T M}$

A. Only the \Rightarrow direction is true. B. Only the \Leftarrow direction is true. C. Both directions are true. D. Neither direction is true.

Problems in language theory

$\mathbf{A}_{\mathrm{DFA}}$ decidable	$\mathbf{A}_{\mathrm{CFG}}$ decidable	\mathbf{A}_{TM} undecidable
$\mathbf{E}_{\mathrm{DFA}}$	$\mathbf{E}_{\mathrm{CFG}}$ decidable	\mathbf{E}_{TM} decidable
undecidable		

$E Q_{\text {DFA }}$
 decidable
 $E Q_{\text {CFG }}$
 ?

$E Q_{\text {TM }}$
undecidable

Proving undecidability for languages that do not involve TM descriptions

Computation history method

A linear bounded automaton (LBA)

A linear bounded automaton (LBA) is a TM variant that has bounded tape, with the number of tape squares equal to the size of the input.

FINITE STATE CONTROL

Configurations

A configuration of an LBA is a setting of state, head position and tape contents.

Exercise

A. $q g n$
B. $q+g+n$
C. $\boldsymbol{q} g^{n}$
D. $q n g^{n}$
E. None of the above.

Prove that $A_{\text {LBA }}$ is decidable

$A_{\text {LBA }}=\{\langle B, w\rangle \mid B$ is an LBA that accepts string $w\}$ Idea: Given $\langle B, w\rangle$, simulate B on w.
If it halts, we know the answer.
If it loops, we can detect because B repeats a configuration.
$\mathrm{S}={ }^{\prime}{ }^{\prime}$ On input $\langle B, w\rangle$, where B is an LBA and w is a string:

1. Simulate B on w for $q n g^{n}$ steps.
2. If it accepts, accept.
3. If it rejects or does not halt, reject."

Computation history

An accepting computation history for a TM M on input w is a sequence of configurations entered by M on input w:

$$
\begin{array}{|cc}
C_{0} \# C_{1} \# \ldots & \# C_{\ell} \\
\text { starting } & \text { accepting } \\
\text { configuration } & \text { configuration }
\end{array}
$$

Starting configuration

$\boldsymbol{C}_{\mathbf{0}}=\left\langle q_{0}\right\rangle \mathbf{w}$

Accepting configuration

$$
\boldsymbol{C}_{\ell}=\ldots\left\langle q_{a c c}\right\rangle \ldots
$$

Each C_{i+1} legally follows from C_{i}

$$
\begin{array}{r}
\boldsymbol{C}_{\boldsymbol{i}}=100\left\langle q_{7}\right\rangle 0110 \\
\boldsymbol{C}_{\boldsymbol{i}+\mathbf{1}}=1002\left\langle q_{5}\right\rangle 110
\end{array}
$$

Given a TM M and a string w, we can construct an LBA that checks whether its input is the accepting computation history of \mathbf{M} on w.

Prove that $E_{\text {LBA }}$ is undecidable

$\mathrm{E}_{\mathrm{LBA}}=\{\langle B\rangle \mid B$ is a LBA and $L(B)=\varnothing\}$
Proof: Suppose to the contrary that TM R decides $\mathrm{E}_{\mathrm{LBA}}$. We construct TM S that decides $\mathrm{A}_{\text {TM }}$.
$S={ }^{\prime}$ On input $\langle M, w\rangle$, where M is a TM and w is a string:

1. Construct an LBA B from M and w :

$B=$ " On input x,

Accept if $\boldsymbol{x}=C_{0} \# \ldots \# C_{\ell}$ is the accepting computation history of M on w:

1. $\quad C_{0}$ is the starting configuration of M on w
2. Each C_{i+1} legally follows from C_{i}
3. C_{ℓ} is an accepting configuration for M "
4. Run TM R on input $$.
5. If it rejects, accept. O.w. reject."

$A L L_{\text {PDA }}$ is undecidable

$A_{L} L_{\text {PDA }}=\{\langle\boldsymbol{P}\rangle \mid \boldsymbol{P}$ is a PDA that accepts all strings $\}$

- We can use the computation history method to show that $A L L_{\text {PDA }}$ is undecidable.
- It follows that $A L L_{C F G}$ is undecidable.
- It follows that $E Q_{C F G}$ is undecidable.

Problems in language theory

$\mathbf{A}_{\text {DFA }}$ decidable	$\mathbf{A}_{\mathrm{CFG}}$ decidable	\mathbf{A}_{TM} undecidable
$\mathbf{E}_{\mathrm{DFA}}$ decidable	$\mathbf{E}_{\mathrm{CFG}}$ decidable	\mathbf{E}_{TM} undecidable

$E Q_{\text {DFA }}$

$\mathbf{E Q}_{\text {CFG }}$
$\mathrm{EQ}_{\text {TM }}$
decidable undecidable undecidable

Post Correspondence Problem

Domino: $\left[\frac{a}{a b}\right]$. Top and bottom are strings. Input: collection of dominos.

$$
\left[\frac{a a}{a b a}\right],\left[\frac{a b}{a b a}\right],\left[\frac{b a}{a a}\right],\left[\frac{a b a b}{b}\right]
$$

Match: list of some of the input dominos (repetitions allowed) with top = bottom

$$
\left[\frac{a b}{a b a}\right],\left[\frac{a a}{a b a}\right],\left[\frac{b a}{a a}\right],\left[\frac{a a}{a b a}\right],\left[\frac{a b a b}{b}\right]
$$

Problem: determine if a match exists. POST=\{input with a match\} is undecidable.

Exercise

A two-dimensional automaton (2DIM-DFA) takes an $m \times n$ rectangle as input, for any $m, n \geq 2$. The boundary squares contain \#; internal squares contain symbols from alphabet Σ. The transition function $\delta: Q \times(\Sigma \cup\{\#\}) \rightarrow \boldsymbol{Q} \times\{L, \boldsymbol{R}, \boldsymbol{U}, \boldsymbol{D}\}$ indicates the next state and head movement (left, right, up, down). How many distinct configurations does a 2DIM-DFA have on a given input?
A. $(m-2)(n-2)|Q|$
B. $m n|Q|$
C. $m n|Q| \cdot|\Sigma|$
D. $m n|Q| \cdot|\Sigma|^{(m-2)(n-2)}$
E. None of the above.

$\#$	$\#$	$\#$	$\#$	$\#$	$\#$	$\#$
$\#$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\#$
$\#$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\#$
$\#$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\#$
$\#$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\#$
$\#$	$\#$	$\#$	$\#$	$\#$	$\#$	$\#$

Exercise

Let \mathbf{A}_{2} DIM-DFA $=\{\langle\boldsymbol{D}, x\rangle \mid \mathrm{D}$ is a 2DIM-DFA and \boldsymbol{D} accepts $x\}$

1. Can a 2DIM-DFA loop?
2. Is A_{2} DIM-DFA decidable?
A. YES to both.
B. NO to both.
C. YES to 1, NO to 2.
D. NO to 1, YES to 2.
