
Sofya Raskhodnikova

Intro to Theory of Computation

LECTURE 20
Last time

• Computation history method

• Review, test.

Today

• Recursion theorem

• Complexity theory

Recursion Theorem

Making TMs that can obtain

their own descriptions

with applications to computer

viruses

L20.211/13/2019

A TM 𝑷𝒘 that prints w

There is a computable function q that on input w

outputs 𝑃𝑤 , where 𝑃𝑤 is a TM that prints w.

TM computing q:

``On input w,

1. Print 〈𝑃𝑤〉 and halt.’’

𝑃𝑤=``Erase input.

1. Print w and halt.’’

L20.311/13/2019

TM S that prints 〈𝑺〉

Theorem. There is a TM S that erases input, prints

〈𝑆〉 and halts.

Proof:

• 𝑞 𝑤 = 〈𝑃𝑤〉

S =``Erase input.

1. Run TM A.

2. Run TM B.

3. Halt.’’

B =``On input 𝑀 , where 𝑀 is a TM,

1. Compute 𝑃〈𝑀〉 = 𝑞(𝑀).

2. Construct TM 𝑆′:

3. Output 〈𝑆′〉 and halt.’’

𝑺′ =``Erase input.

1. Run TM 𝑃〈𝑀〉.

2. Run TM 𝑀.

3. Halt.’’

A=𝑃〈𝐵〉

11/13/2019

In English

• Write this sentence.

• Write two copies of the following, the second

one in quotes:

``Write two copies of the following, the second

one in quotes:’’

11/13/2019 L22.5

Recursion Theorem

If there is a TM T that computes a function 𝑡 𝑤, 𝑀

then there is a TM R that computes 𝑟 𝑤 = 𝑡 𝑤, 𝑅 .

Punchline: ``Obtain your own description’’ is a valid

step in an algorithmic description of a TM.

11/13/2019

A=𝑃′〈𝐵,𝑇〉

L20.6

R =``On input 𝑤,
1. Place # after 𝑤.

2. Run TM A.

3. Run TM B.

4. Run TM T.’’

Recursion Theorem

11/13/2019

If there is a TM T that computes a function 𝑡 𝑤, 𝑀
then there is a TM R that computes 𝑟 𝑤 = 𝑡 𝑤, 𝑅 .

𝑹 =``On input 𝑤,
1. Place # after 𝑤.

2. Run TM A.

3. Run TM B.

4. Run TM T.’’

A=𝑃′〈𝐵,𝑇〉

B =``On input w# 𝑀1,𝑀2 ,

where 𝑀1, 𝑀2 are TMs,

1. Compute 𝑃′〈𝑀1,𝑀2〉 = 𝑞′(𝑀1, 𝑀2).

2. Construct TM 𝑅′:

3. Output w#〈𝑅′〉 and halt.’’

𝑹′ =``On input 𝑤,
1. Place # after 𝑤.

2. Run TM 𝑃′〈𝑀1,𝑀2〉.

3. Run TM 𝑀1.
4. Run TM 𝑀2’’

Recursion Theorem

Punchline: ``Obtain your own description’’ is a valid

step in an algorithmic description of a TM.

11/13/2019 L20.8

Application of recursion theorem

• Give an alternative proof that 𝐴𝑇𝑀 is undecidable.

(on the board)

11/13/2019 L22.9

Application of recursion theorem

• A TM M is minimal if there is no TM equivalent

to M that has a shorter description than 𝑀 .

• 𝑀𝐼𝑁𝑇𝑀 = { 𝑀 ∣ 𝑀 is minimal TM}.

• Show that 𝑀𝐼𝑁𝑇𝑀 is not Turing-recognizable.

11/13/2019 L22.10

(on the board)

Complexity Theory

11/13/2019

Already learned
• Automata theory
• Computability theory

Last unit: complexity theory

First topic: time complexity
• Measuring complexity (as in Algorithms)
• Asymptotic notation (as in Algorithms)
• Relationships between models

L20.13

How much time/memory needed

to decide a language?

Example: Consider 𝐴 = 0𝑚1𝑚 𝑚 ≥ 0}.

• Time needed for 1-tape TM?

• 𝑀1=“

11/13/2019

FINITE

CONTROL

0 0 .. 0 1 1 .. 1

1. Scan input and reject if it is not of the form 0∗1∗.
2. Repeat while both 0s and 1s remain on the tape:

3. Cross off one 0 and one 1

4. Accept if no 0s and no 1s left; otherwise reject.”

L20.14

Running time analysis

• Focus on worst case:

– upper bound on running time for all inputs of given length

• Exact time depends on the computer

– instead measure asymptotic growth

11/13/2019

If M is a TM and 𝑓: ℕ → ℕ then

“M runs in time 𝑓(𝑛)” means

for every input 𝑤 ∈ Σ∗ of length 𝑛,

M on 𝑤 halts within 𝑓(𝑛) steps

L20.15

11/13/2019

Asymptotic notation

f(n) = O(g(n)) means

there exist constants c > 0, n0 > 0 such
that 0 f(n) cg(n) for all n n0.

O-notation (upper bounds):

EXAMPLE: 2n2 = O(n3)

functions,
not values

(c = 2, n0 = 1)

L20.16L20.16

11/13/2019

Asymptotic Notation

• One-sided equality: 𝑇(𝑛) = O(𝑓(𝑛)).

– Not transitive:

•𝑓(𝑛) = 5𝑛3; 𝑔(𝑛) = 3𝑛2

•𝑓(𝑛) = O(𝑛3) and 𝑔(𝑛) = O(𝑛3)

• but 𝑓 𝑛 ≠ 𝑔(𝑛).

– Alternative notation: 𝑓(𝑛) O(𝑔(𝑛)).

L20.17

Examples

• 106 𝑛3+ 2𝑛2 − 𝑛 + 10 =

• 𝑛 + log 𝑛 =

• 𝑛 (log 𝑛 + 𝑛) =

• 𝑛 =

11/13/2019

O(𝑛3)

O(𝑛)

O(𝑛 𝑛)

also O(𝑛2)O(𝑛),

L20.18

11/13/2019

-notation (lower bounds)

EXAMPLE: (c = 1, n0 = 16)

O-notation is an upper-bound notation. It
makes no sense to say f(n) is at least O(n2).

𝑛 = Ω(log 𝑛)

f(n) = (g(n)) means

there exist constants c > 0, n0 > 0 such
that 0 cg(n) f(n) for all n n0.

L20.19

11/13/2019

-notation (lower bounds)

• Be careful: “Any comparison-based sorting algorithm

requires at least O(𝑛 log 𝑛) comparisons.”

– Meaningless!

– Use for lower bounds.

L20.20

11/13/2019

-notation (tight bounds)

(g(n)) means both O(g(n)) and (g(n))

EXAMPLE:)(2 22

2

1
nnn

Polynomials are simple:

ad n
d + ad–1n

d–1 + + a1n + a0 = (nd)

L20.21

11/13/2019

o-notation and -notation

EXAMPLE: (n0 = 2/c)

O-notation and -notation are like and .

o-notation and -notation are like < and >.

2n2 = o(n3)

f(n) = o(g(n)) means

for every constant c > 0,
there exists a constants n0 > 0
such that 0 f(n) cg(n) for all n n0.

L20.22

11/13/2019

Overview

Notation … means … Think… Example lim
n←∞

𝑓(𝑛)

𝑔 𝑛

f(n)=O(g(n)) ∃ c>0, n0>0, ∀ n > n0 :

0 ≤f(n) < cg(n)

Upper bound 100n2

= O(n3)

If it exists, it

is < ∞

f(n)=(g(n)) ∃c>0, n0>0, ∀ n > n0 :

0 ≤ cg(n) < f(n)

Lower

bound
2n

= (n100)

If it exists, it

is > 0

f(n)=(g(n)) both of the above:

f=(g) and f = O(g)

Tight bound log(n!)

= (n log n)

If it exists, it

is > 0 and <

∞

f(n)=o(g(n)) ∀ c>0, ∃ n0>0, ∀ n > n0 :

0 ≤ f(n) < cg(n)

Strict upper

bound

n2 = o(2n) Limit exists,

=0

f(n)=(g(n)) ∀ c>0, ∃n0>0, ∀ n > n0 :

0 ≤ cg(n) < f(n)

Strict lower

bound

n2

= (log n)

Limit exists,

=∞

L20.23

11/13/2019

Common Functions: Asymptotic Bounds

• Polynomials. a0 + a1n + … + adn
d is (nd) if ad > 0.

• Logarithms. log a n = (log b n) for all constants a, b > 0.

For every x > 0, log n = o(nx).

• Exponentials. For all r >1 and all d > 0, nd = o(rn).

• Factorial. 𝑛! = 𝑛 𝑛 − 1 ⋯1.

By Sterling’s formula,

can avoid specifying the base log grows slower than every polynomial

Every exponential grows faster than every polynomial

L20.24

11/13/2019

Sort by asymptotic order of

growth
a) n log n

b)

c) log n

d) n2

e) 2n

f) n

g) log log n

n

h) n!

i) n1,000,000

j) n1/log(n)

k) log(n!)

l)
𝑛
2

m) 2𝑛
2

n) 22
𝑛

L20.25

Time complexity classes

11/13/2019

TIME(𝒇(𝒏)) is a class of languages.

𝑨 ∈ TIME(𝒇(𝒏)) means that

some 1-tape TM M

that runs in time O(𝑓(𝑛)) decides A.

L20.26

The class P

• The same class even if we substitute another

reasonable deterministic model.

• Roughly the class of problems realistically

solvable on a computer.

11/13/2019

P is the class of languages decidable in polynomial time on

a deterministic 1-tape TM:

𝑷 =

𝑘

𝑇𝐼𝑀𝐸 𝑛𝑘 .

L20.27

