Intro to Theory of Computation

L ECTURE 20

Last time

« Computation history method
* Review, test.

Today

« Recursion theorem

» Complexity theory

Sofya Raskhodnikova

(K
Y Recursion Theorem

Making TMs that can obtain
their own descriptions

™
with applications to eemputer
Viruses

1111111111 L20.2

5%% ATM P, that prints w

There Is a computable function g that on input w
outputs (P,), where P,, is a TM that prints w.

P, = "Erase input.

1. Print w and halt.”’
TM computing Q.

~On input w,

1. Print(P,) and halt.”

11/13/2019 L20.3

fﬁ TM S that prints (S)

Theorem. There isa TM S that erases input, prints
(S) and halts.

Proof: A=P g\

e glw) =(P,) B =""Oninput (M), where M isa TM,
1. COmpUte <P(M)> = C[((M))

S =""Erase input. 2. Construct TM S':
1. RunTM A. S’ =" Erase input.
2. Run TM B. 1. Run TM P<M>.
3. Halt.” 2. RunTM M.
3. Halt.”

11/13/2019 3. OUtpUt (S’> and halt.”’

5%% In English

« \Write this sentence.

« Write two copies of the following, the second
one In quotes:

~"Write two copies of the following, the second
one In quotes:”’

11/13/2019 1225

3@% Recursion Theorem

If there isa TM T that computes a function t(w, (M))
then there isa TM R that computes r(w) = t(w, (R)).

Punchline: “Obtain your own description’’ 1s a valid
step In an algorithmic description of a TM.

R ="0On input w,

1. Place # after w.
2. Run TM A.
3. Run TM B.
4, RunTMT.”

A:P’(B,T)

11/13/2019 L20.6

299 | Recursion Theorem

If there isa TM T that computes a function t(w, (M))
then there isa TM R that computes r(w) = t(w, (R)).

B =""On input w#(M; M,),

R = On input w, where My, M, are TMs,
1. Place # after w. 1. Compute (P’ a1,y = q'({My, M3)).
2. Run TMA. 2. Construct TM R':
3. Run TM B.
4. RunTMT.” R"="0On inputw,

1. Place # after w.

2. RunTM P’(Ml,Mz)'
3. RunTM M;.

4, RunTM M,”’

3. Output w#(R') and halt.”’

A:P,(B,T)

11/13/2019

3%32 Recursion Theorem

Punchline: “Obtain your own description’’ 1s a valid
step in an algorithmic description of a TM.

11/13/2019 L20.8

229 | Application of recursion theorem

 Give an alternative proof that A, Is undecidable.
(on the board)

11/13/2019 1229

332 Application of recursion theorem

« ATM M is minimal if there iIs no TM equivalent
to M that has a shorter description than (M).

e MINyy = {{M) | M is minimal TM}.
» Show that MIN,, I1s not Turing-recognizable.

(on the board)

11/13/2019 L22.10

332

Already learned

» Automata theory

» Computability theory

Last unit: complexity theory

First topic: time complexity

» Measuring complexity (as in Algorithms)

» Asymptotic notation (as in Algorithms)
* Relationships between models

Complexity Theory

11/13/2019 L20.13

&3 | How much time/memory needed
332 to decide a language?

Example: Consider A = {0™1™|m = 0}.
* Time needed for 1-tape TM?

FINITE
CONTROL

¢ M1=“1_ Scan input and reject if it is not of the form 0" 1%,
2. Repeat while both Os and 1s remain on the tape:
3. Cross off one 0 and one 1

4. Accept if no Os and no 1s left; otherwise reject.”

l[loo . 011 .1)

11/13/2019 L20.14

299 | Running time analysis

4 If MisaTM and f: N — N then N
“M runs in time f(n)” means
for every input w € ¥£* of length n,

\ M on w halts within f (n) steps Y

* Focus on worst case:
— upper bound on running time for all inputs of given length

 EXxact time depends on the computer
— Instead measure asymptotic growth

11/13/2019 L20.15

fﬁ Asymptotic notation

O-notation (upper bounds):
f(n) = O(g(n)) means A

there exist constants c > 0, n, > 0 such
\that 0 <f(n) < cg(n) for all n > n,,.

/

ExavpLe: 2Nn2 = O(HB) (C =2, Ny = 1)
/) —
functions,
not values

1111111111 L2 1

3%52 Asymptotic Notation

* One-sided equality: T(n) = 0(f(n)).
—Not transitive:
of(n) = 5n°; g(n) = 3n?
*f(n) = 0(n’) and g(n) = O(n°)
«but f(n) = g(n).
— Alternative notation: f(n) € O(g(n)).

11/13/2019 L20.17

G ‘
2339 Examples

e 10°n° 4+ 2n* —n +10= O(n3
» Vn + logn = O(vn)

e n (logn++n) = O(n/n)
o N = O(n), also O(n?)

1111111111 L20.18

5%% Q-notation (lower bounds)

O-notation Is an upper-bound notation. It
makes no sense to say f(n) is at least O(n?).

g f(n) = Q(g(n)) means h

there exist constants ¢ > 0, n, > 0 such
\that 0 <cg(n) <f(n) for all n > n,,.

/

Exaveie: n=Qlogn) (C=1,n,=16)

1111111111 L20.19

fﬁ Q-notation (lower bounds)

« Be careful: “Any comparison-based sorting algorithm
requires at least O(n log n) comparisons.”

—Meaningless!
—Use Q) for lower bounds.

11/13/2019 L20.20

§§ ®-notation (tight bounds)

[®(g(n)) means both O(g(n)) and Q(g(n)) }

ExampLE: %nz — 2N =®(ﬂ2)

Polynomials are simple:
asnd+a, ,n1+ ... +a,n+a,=06(nY

1111111111 L20.21

g‘% o-notation and m-notation

O-notation and Q2-notation are like < and >.
o-notation and m-notation are like < and >.

4 f(n) = o(g(n)) means A
for every constant ¢ > 0,
there exists a constants n, > 0
\such that 0 < f(n) < cg(n) for all n>n,. -
ExampLE: 2n¢ = o(n3) (ﬂO = 2/c)

1111111111 L20.22

£3
33:

Overview

Notation ... means ... Think... Example lim £
neoo g(n)
f(n)=0(g(n)) |3 c>0,n,>0,V n>n,: Upper bound | 100n2 If it exists, it
0 <f(n) <cg(n) = 0O(n%) is < 00
f(n)=Q(g(n)) | 3¢>0,n>0, ¥V n>n,: Lower oh If it exists, it
0 < cg(n) <f(n) bound = O(n1%0) 1S>0
f(nN)=G(g(n)) | both of the above: Tight bound | log(n!) If it exists, it
f=Q(g) and f = O(Qg) =0O(nlogn)|is>0and<
0.0)
f(n)=o(g(n)) |V ¢>0,3 n,>0,V n>n,: | Strictupper |n2=o0(2") |Limit exists,
0 <f(n) <cg(n) bound =0
f(n)=w(g(n)) | v ¢>0,In,>0,V n>n,: |Strict lower |n? Limit exists,
0 < cg(n) <f(n) bound =w(logn) |=o0

11/13/2019

L20.23

GO

r Common Functions: Asymptotic Bounds
332 ymp

 Polynomials. a, + a;n + ... + a4n? is ®(nd) if a4 > 0.
 Logarithms. log ,n 0 O(log, n) for all constants a, b > 0.

log grows slower than every polynomial

can avoid specifying the base
For every x >0, log n = o(nX).

Every exponential grows faster than every polynomial

« Exponentials. For all r >1 and all d > 0, nd=o(r").

e Factorial. n!=nn—-1)---1.
By Sterling’s formula,

n! = (v2mn) (:)n (14 o(1)) = 20(nloen)

11/13/2019 L20.24

G | Sort by asymptotic order of
332 growth

a) nlogn h) n!
b) \/ﬁ i) 1,000,000
c) logn j) nilogn)
d) n? k) log(n')
)) ()
g) loglogn m 2"

n) 22"

11/13/2019

L20.25

239 | Time complexity classes

4 N

TIME(f(n)) 1s a class of languages.

A € TIME(f(n)) means that

some 1-tape TM M
that runs in time O(f (n)) decides A.

S /

1111111111 L20.26

@52 The class P

Y

P 1s the class of languages decidable in polynomial time on
a deterministic 1-tape TM:

P = U TIME (n*).

 The same class even If we substitute another
reasonable deterministic model.

« Roughly the class of problems realistically
solvable on a computer.

11/13/2019 L20.27

