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Intro to Theory of Computation

LECTURE 21
Last time
• Recursion theorem
• Measuring complexity
• Asymptotic notation

Today
• Measuring complexity
• Relationship between models
• Class P
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Exercise

In the future we will find algorithms for all 

computational problems, that is, problems with 

well-defined inputs and desired outputs.

A. True. I am an optimist.

B. It is difficult to make predictions, especially about 

the future. (K.K. Steincke)

C. False. Finitely many people will be able to design 

only finitely many algorithms.

D. False. There are more computational problems than 

algorithms.
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Predictions

It is not hard to make predictions, it is hard to 

make interesting predictions 

(of unpredictable events you don’t control).

• It will be dark tonight at 11pm.

• Most people in this room will have another meal 

today.

• The exercise from the previous slide will appear 

on the final.

L22.311/13/2018



Running time analysis

• Focus on worst case:

– upper bound on running time for all inputs of given length

• Exact time depends on computer

– instead measure asymptotic growth

11/13/2018

If M is a TM and 𝑓: ℕ → ℕ then

“M runs in time 𝑓(𝑛)” means

for every input 𝑤 ∈ Σ∗ of length 𝑛,

M on 𝑤 halts within 𝑓(𝑛) steps

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson L21.4



Time complexity classes

11/13/2018

TIME(𝒇(𝒏)) is a class of languages.

𝑨 ∈ TIME(𝒇(𝒏)) means that 

some 1-tape TM M 

that runs in time O(𝑓(𝑛)) decides A.
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How much time/memory needed 

to decide a language?

Example: Consider 𝐴 = 0𝑚1𝑚 𝑚 ≥ 0}.

• 𝑀1=“

• 𝑀1 runs in time 𝑂 𝑛2 .

• 𝐴 ∈ 𝑇𝐼𝑀𝐸 𝑛2 .

• Is there a faster algorithm?

11/13/2018

1. Scan input and reject if it is not of the form 0∗1∗.
2. Repeat while both 0s and 1s remain on the tape:

3. Cross off one 0 and one 1

4. Accept if no 0s and  no 1s left; otherwise reject.”

L21.6



How much time/memory needed 

to decide a language?

Example: Consider 𝐴 = 0𝑚1𝑚 𝑚 ≥ 0}.

• 𝑀2=“

• 𝑀2 runs in time 𝑂 𝑛 log 𝑛 , so 𝐴 ∈ 𝑇𝐼𝑀𝐸 𝑛 log 𝑛 .

• Sipser, Problem 7.49: If language L can be decided in 

o 𝑛 log 𝑛 time on a 1-tape TM then L is regular.

• 1-tape TM need Ω(𝑛 log 𝑛) time to decide A.

11/13/2018

1. Scan input and reject if it is not of the form 0∗1∗.
2. Repeat while both 0s and 1s remain on the tape:

3. Reject if total number of 0s and 1s remaining is odd.

4. Cross off every other 0 starting from the first 0                     

and every other 1 starting from the first 1

5. Accept if no 0s and  no 1s left; otherwise reject.”

L21.7



Two-tape TM can do it faster

11/13/2018

FINITE 

CONTROL
0 0 .. 0 1 1 .. 1

Example: Consider 𝐴 = 0𝑚1𝑚 𝑚 ≥ 0}.

• 𝑀3=“

• A is decided in 𝑂(𝑛) time (linear time) on a 2-tape TM.

Unlike decidability, 

the complexity of the language depends on the model.

1. Scan input and reject if it is not of the form 0∗1∗.
2. Copy 0s on tape 2.

3. Scan tape 1. For each 1 read, cross off a 0 on tape 2.

4. Accept if no 0s remain on tape 2; otherwise reject.”

L21.8



Complexity relationships 

between models: number of tapes

Theorem. Let 𝑡(𝑛) be a function, where 𝑡 𝑛 ≥ 𝑛.

Every 𝑡 𝑛 time multitape TM has 

an equivalent 𝑂 𝑡 𝑛
2

time 1-tape TM.

Proof: 

• Recall: we already showed                                          

how to simulate multitape TMs by 1-tape TMs.

• Need time analysis of the simulation.

11/13/2018 L21.9



Theorem: Every Multitape Turing Machine can be 

transformed into a single-tape Turing Machine

FINITE 

STATE 

CONTROL

0 01

FINITE 

STATE 

CONTROL 0 01 # # #



SIMULATING MULTIPLE TAPES

1. “Format” tape.

3. If a tape head goes off right end, insert blank.

If tape head goes off left end, move back right.

Scan left-to-right, finding current symbols

Scan left-to-right, writing new symbols

Scan left-to-right, moving each tape head.

2. For each move of the k-tape TM:
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Complexity relationships 

between models: number of tapes

Theorem. Let 𝑡(𝑛) be a function, where 𝑡 𝑛 ≥ 𝑛.

Every 𝑡 𝑛 time multitape TM has 

an equivalent 𝑂 𝑡 𝑛
2

time 1-tape TM.

Proof: Time analysis of the simulation.

• Time initialize tape: 𝑂(𝑛 + 𝑘) = 𝑂(𝑛)

• Time to simulate one step of the multitape TM: 𝑂(𝑡(𝑛))

(at any point ≤ 𝑡(𝑛) nonblank squares on each tape)

• Number of steps to simulate: 𝑡 𝑛

Total time: 𝑂 𝑛 + 𝑂 𝑡 𝑛 𝑡 𝑛 = 𝑂((𝑡 𝑛 2)
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Exercise

Let 𝑡(𝑛) be a function, where 𝑡 𝑛 ≥ 𝑛.

Every 3-tape TM that runs in time O(𝑡(𝑛)) can 

be simulated by a 1-tape TM that runs in time

A. O(𝑡(𝑛)) 

B. O(𝑡(𝑛2)) 

C. O(𝑡(𝑛3)) 

D. O 𝑡 𝑛
2

E. Some 3-tape TMs can’t be simulated by 1-tape TMs

3/17/2016 L22.13



The class P

• The same class even if we substitute another 

reasonable deterministic model.

• Roughly the class of problems realistically 

solvable on a computer.

11/13/2018

P is the class of languages decidable in polynomial time on 

a deterministic 1-tape TM:

𝑷 = 

𝑘

𝑇𝐼𝑀𝐸 𝑛𝑘 .

L21.14



Time complexity of NTMs

11/13/2018

The running time a nondeterministic decider 𝑁 is 𝑡(𝑛) if

on all inputs of length 𝑛, NTM𝑁 takes at most 𝒕(𝒏) steps 

on  the longest nondeterministic branch.

L23.16



Time complexity of NTMs

• Length of the longest computational branch, even if accepts before

11/13/2018

Deterministic Nondeterministic

accept or reject reject

accept

L23.17
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Complexity relationships 

between models: nondeterminism

Theorem. Let 𝑡(𝑛) be a function, where 𝑡 𝑛 ≥ 𝑛.
Every 𝑡 𝑛 time nondeterministic TM has 

an equivalent 2𝑂 𝑡 𝑛 time 1-tape deterministic TM.

Proof: Simulate an NTM by a 3-tape TM.

• # of leaves ≤ 𝒃𝒕(𝒏)

• # of nodes ≤ 𝟐𝒃𝒕(𝒏)

Time

• increment the address and

simulate from the root to a node: 𝑶(𝒕(𝒏))

• Total: 𝑶(𝒕(𝒏)𝒃𝒕(𝒏)) = 𝟐𝑶 𝒕 𝒏

11/13/2018 L22.18
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Complexity relationships 

between models: nondeterminism

Theorem. Let 𝑡(𝑛) be a function, where 𝑡 𝑛 ≥ 𝑛.
Every 𝑡 𝑛 time nondeterministic TM has 

an equivalent 2𝑂 𝑡 𝑛 time 1-tape deterministic TM.

Proof: So, a 3-tape TM can simulate an NTM in 2𝑂(𝑡 𝑛 ) time.

Converting to a 1-tape TM at most squares the running time:

(2𝑂(𝑡 𝑛 ))𝟐 = 2𝑂(𝟐 𝑡 𝑛 ) = 2𝑂(𝑡 𝑛 )

11/13/2018 L22.19



Difference in time complexity

At most polynomial difference between 

deterministic models.

At most exponential difference between 

deterministic and nondeterministic models.

L3.2011/13/2018
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The class P

• The same class even if we substitute another 

reasonable deterministic model.

• Roughly the class of problems realistically 

solvable on a computer.

11/13/2018

P is the class of languages decidable in polynomial time on 

a deterministic 1-tape TM:

𝑷 = 

𝑘

𝑇𝐼𝑀𝐸 𝑛𝑘 .

L23.21



Examples of languages in P

• PATH ={ 𝐺, 𝑠, 𝑡 ∣ 𝐺 is a directed graph that has 

a directed path from 𝑠 to 𝑡}

• RELPRIME = { 𝑥, 𝑦 ∣ 𝑥 and 𝑦 are relatively 

prime}

• PRIMES ={𝑥 ∣ 𝑥 is a prime number}  [2002]

• Every context-free language

L22.2211/15/2018
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11/15/2018 Sofya Raskhodnikova; based on slides by Nick Hopper

Recall: Chomsky Normal Form for 

CFGs

• Can have a rule 𝑆 → ε.

• All remaining rules are of the form

𝐴 → 𝐵𝐶 𝐴, 𝐵, 𝐶 ∈ 𝑉

𝐴 → 𝑎 𝑎 ∈ Σ

• Cannot have 𝑆 on the RHS of any rule.

Lemma. Any CFG can be converted into an equivalent 

CFG in Chomsky normal form. 

Lemma. If G is in Chomsky normal form, any derivation 

of string w of length 𝑛 in G has 2𝑛 − 1 steps.

L22.23



A decider for a CFL

• Let L be a CFL generated by a CFG G in CNF

• How long does it take? 

• Idea: use dynamic programming
– Solve smaller subproblems

– Record results in a table

– Construct solution for each subproblem from smaller solved 
instances

L22.2411/15/2018

M = `` On input 〈𝑤〉, where 𝑤 is a string:

1. Let 𝑛 = |𝑤|.
2. Test all derivations with 2𝑛 − 1 steps.

3. Accept if any derived 𝒘. O.w. reject.’’

(exponential time)

(on the board)


