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LECTURE 22
Last time
• Measuring complexity
• Relationship between models
• Class P

Today
• Class NP
• The P vs NP question
• Polynomial-time reductions
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Exercise

Consider the following algorithm A for PRIMES.

Given b, try to divide b by 2,3,…, 𝒃.

If one of them divides b, accept; o.w. reject.

If 𝒏 = input length, # of divisions A performs is 

A. 𝚯( 𝑛 )

B. 𝚯(𝑛 )

C. 𝟐𝚯(n)

D. 𝟐𝚯( 𝒏)

E. None of the above.
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Every CFL is in P

Recall: Chomsky Normal Form for CFGs

• Can have a rule 𝑆 → ε.

• All remaining rules are of the form

𝐴 → 𝐵𝐶 𝐴, 𝐵, 𝐶 ∈ 𝑉

𝐴 → 𝑎 𝑎 ∈ Σ

• Cannot have 𝑆 on the RHS of any rule.

Idea: use dynamic programming
– Solve smaller subproblems

– Record results in a table

– Construct solution for each subproblem from smaller solved 
instances
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(On the board)
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Difference in time complexity

At most polynomial difference between 

deterministic models.

At most exponential difference between 

deterministic and nondeterministic models.
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all reasonable
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The class P

• The same class even if we substitute another 

reasonable deterministic model.

• Roughly the class of problems realistically 

solvable on a computer.
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P is the class of languages decidable in polynomial time on 

a deterministic 1-tape TM:

𝑷 = 

𝑘

𝑇𝐼𝑀𝐸 𝑛𝑘 .
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Examples of languages in P
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Problem Description Algorithm Yes No

MULTIPLE Is x a multiple of y?
Grade school 

division
51, 17 51, 16

RELPRIME Are x and y relatively prime? Euclid (300 BCE) 34, 39 34, 51

PRIMES Is x prime? AKS (2002) 53 51

all CFLs

(e.g. the 
language of 

balanced 
parentheses 

and brackets)

Is the string in the given CFL?

(e.g., is the string of 
parentheses and brackets 

balanced?)

Dynamic 
programming

Depends on 

the 

language;

e.g.

(([])[])

Depends on 

the 

language;

e.g.

([)], (()

LSOLVE
Is there a vector x that 

satisfies Ax = b?
Gauss-Edmonds 

elimination
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Central ideas

•Poly-time as “feasible”

• most natural problems either are easy 

(say in TIME(n3)) or have no known poly-time algorithms

• P =languages that can be decided in poly-time

• NP = languages for which the membership in the language is 

easy to verify given a hint

• EXP = languages that can be decided in exponential time

• Poly-time Reductions: X is no harder than Y for poly-time TMs
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Class NP

• Verification algorithm intuition
– Verifier  views things from "managerial" viewpoint.

– Verifier doesn't determine whether w  L  on its own;
rather, it checks with a proposed hint whether w  L.

• Algorithm V( 〈𝑤, 𝑐〉 ) is a verifier for language L if for every string w,  

w  L iff there exists a string c such that V(〈𝑤, 𝑐〉) accepts.

• The running time of a verifier is measured only in terms of length of w.

A polynomial-time verifier runs in time polynomial in |w| and has

certificate c of length polynomial in w: 

i.e., |c|=O( 𝑤 𝑘) for some constant k.
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"certificate" or "witness"
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The class NP
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NP is the class of languages that have polynomial-time 

verifiers.
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Examples of languages in NP

• COMPOSITES = {〈𝑥〉 ∣ 𝑥 = 𝑝𝑞, for int 𝑝, 𝑞 > 1}

• certificate: integer 𝑝 > 1 that divides 𝑥

such a certificate exists iff 𝑥 is composite

• verifier 
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V = `` On input 〈𝒙, 𝒑〉, where 𝒙 and 𝑝 are integers:

1. If 𝒑 ≤ 𝟏 or 𝒑 ≥ 𝒙, reject.

2. Else if 𝑥 is a multiple of 𝑝, accept. O.w. reject.’’
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Examples of languages in NP

• UHamCycle = {〈𝐺〉 ∣ 𝐺 is an undirected graph that contains a 

cycle C that visits each node exactly once}

• certificate C:  Hamiltonian cycle (i.e., permutation of the nodes)

11/15/2018

graph G certificate C
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Examples of languages in NP

• UHamCycle = {〈𝐺〉 ∣ 𝐺 is an undirected graph that contains a 

cycle C that visits each node exactly once}

• certificate C:  Hamiltonian cycle (i.e., permutation of the nodes)

• verifier
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V = `` On input 〈𝑮, 𝑪〉:

1. Accept if 

2. each node of G appears in C exactly once

3. there is an edge between every pair of  

adjacent nodes in C 

4. O.w. reject.’’
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Examples of languages in NP: SAT

• Boolean variables: variables that can take on values T/F (or 1/0)

• Boolean operations: ∨, ∧, and ¬

• Boolean formula: expression with Boolean variables and ops

Example: 𝑥1 ∨ 𝑥2 ∧ 𝑥3
• An assignment of 0s and 1s to the variables satisfies formula 𝜑 if 

it makes it evaluate to 1.

• 𝜑 is satisfiable if there exists an assignment that satisfies it.

SAT ={ 𝜑 ∣ 𝜑 is a satisfiable Boolean formula}.

Prove: SAT ∈ NP.
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Classes P, NP, EXP

• P.  Languages for which there is a poly-time algorithm.

algorithm that runs in time O(𝑛𝑘) for some 𝑘
• EXP.  Languages for which there is an exponential-time 

algorithm.

algorithm that runs in time O(2𝑛
𝑘
) for some 𝑘

• NP.  Languages for which there is a poly-time verifier.

• Lemma.  P   NP.

• Lemma.  NP   EXP.

• Lemma. A language L is in NP iff L can be decided by a 
polynomial-time nondeterministic TM. 
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P vs. NP

• Does P = NP?  [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

– Is the decision problem as easy as the verification problem?

– Clay $1 million prize.

• If yes:  Efficient algorithms for UHamPath, SAT, TSP, factoring

• If no:  No efficient algorithms possible for these problems.

• Consensus opinion on P = NP?  Probably no.
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EXP NP

P

If  P  NP If  P = NP

EXP

P = NP

would break RSA cryptography
(and potentially collapse economy)
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Classify Problems

• Desiderata: classify problems according to those that can be 

solved in polynomial-time and those that cannot.

• Some problems provably require exponential time (Chapter 9):

– Given a Turing machine, does it halt in at most k steps?

– Given a board position in an n-by-n generalization of chess, can black 

guarantee a win?

• Frustrating news: huge number of fundamental problems have 

defied classification for decades.

• Chapters 7.4-7.5 (NP-completeness): Show that these 

fundamental problems are "computationally equivalent" and 

appear to be different manifestations of one really hard problem.
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Polynomial-time reduction

Given languages A and B,

A≤𝑝B 

if there is a poly-time computable function 𝑓,
such that for all strings 𝑤,

𝑤 ∈ 𝐴 iff 𝑓(𝑤) ∈ 𝐵. 

A B

𝒇

Polynomial-time reductions 
are the major tool we have 
to understand P and NP11/15/2018 L22.18



Implication of poly-time reductions

Theorem. If A≤𝑝 B and B∈ 𝐏 then A∈ 𝐏.

(So, if A≤𝑝 B and A∉ 𝐏 then B∉ 𝐏.)

Theorem. If A≤𝑝 B and B≤𝑝 C then A≤𝑝 C.

(Poly-time reductions compose.) 
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Basic reduction strategies

• Reduction by simple equivalence.

• Reduction from special case to general case.

• Reduction by encoding with gadgets.

Basic reduction strategies



Independent Set

Given an undirected graph G, an independent set in G is a set of 

nodes, which includes at most one endpoint of every edge.

INDEPENDENT SET = { 𝐺, 𝑘 ∣ 𝐺 is an undirected graph which has an 

independent set with 𝑘 nodes}

• Is there an independent set of size  6?  

– Yes.

• Is there an independent set of size  7?  

– No.

independent set
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Vertex Cover

Given an undirected graph G, a vertex cover in G is a set of nodes, 

which includes at least one endpoint of every edge.

VERTEX COVER= { 𝐺, 𝑘 ∣ 𝐺 is an undirected graph which has a vertex cover 

with 𝑘 nodes}

• Is there vertex cover of size  4?  

– Yes.

• Is there a vertex cover of size  3?  

– No.

vertex cover
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Independent Set and Vertex Cover

Claim. S is an independent set iff V  S is a vertex cover.

• 

– Let S be any independent set.

– Consider an arbitrary edge (u, v).

– S is independent  u  S or v  S   u  V  S or v  V  S.

– Thus, V  S covers (u, v).

• 

– Let V  S be any vertex cover.

– Consider two nodes u  S and v  S.

– Then (u, v)  E since V  S is a vertex cover.

– Thus, no two nodes in S are joined by an edge   S independent set. ▪
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INDEPENDENT SET reduces to 

VERTEX COVER

Theorem. INDEPENDENT-SET ≤𝑝 VERTEX-COVER.

Proof. “On input 𝐺, 𝑘 , where 𝐺 is an undirected graph and 𝑘 is an 

integer,

1. Output 𝐺, 𝑛 − 𝑘 , where 𝑛 is the number of nodes in 𝐺.”

Correctness: 

• G has an independent set of size 𝑘 iff it has a vertex cover of size 

𝑛 − 𝑘.

• Reduction runs in linear time.
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Basic reduction strategies

• Reduction by simple equivalence.

• Reduction from special case to general case.

• Reduction by encoding with gadgets.

Reduction from special case to 

general case


