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Consider the following algorithm A for PRIMES.
Given b, try to divide b by 2,3,...,Vb.
If one of them divides b, accept; o.w. reject.

If n = input length, # of divisions A performs is
A. O({n)

B. O(n)
C. 20m)
D 20Gn)

E. None of the above.
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3%% Every CFLISINP

Recall: Chomsky Normal Form for CFGs
« Canhavearule§ — e.
 All remaining rules are of the form
A - BC ABCeV
A-a aeEzx
« Cannot have S on the RHS of any rule.

Idea: use dynamic programming
— Solve smaller subproblems (On the board)
— Record results in a table

— Construct solution for each subproblem from smaller solved
instances
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fﬁ Difference in time complexity

At most polynomial difference between
all reasonable deterministic models.

At most exponential difference between
deterministic and nondeterministic models.
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@52 The class P

Y

P 1s the class of languages decidable in polynomial time on
a deterministic 1-tape TM:

P = U TIME (n*).

 The same class even If we substitute another
reasonable deterministic model.

« Roughly the class of problems realistically
solvable on a computer.
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3%52 Examples of languages In P

MULTIPLE Is x a multiple of y? Grade school

division Lr 1
RELPRIME Are x and y relatively prime?  Euclid (300 BCE) 34, 39 34, 51
PRIMES Is x prime? AKS (2002) 53 51
all CFLs 5 d Depends on
(e.g. the Is the string in the given CFL? epetnhes on the
language of (e.g., is the string of Dynamic language language;
balanced parentheses and brackets programming o g ; e.g.
parentheses balanced?) (D1, 0O
and brackets)
LSOLVE Is there a vector x that Gauss-Edmonds [(2) i 12] [ ] F (1) (1)] ! ]
satisfies Ax = b? elimination 03 151 |36 31 1
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f;% Central i1deas

*Poly-time as “feasible”

« most natural problems either are easy
(say in TIME(n?®)) or have no known poly-time algorithms

* P =languages that can be decided in poly-time

* NP = languages for which the membership in the language is
easy to verify given a hint

« EXP = languages that can be decided in exponential time

* Poly-time Reductions: X is no harder than Y for poly-time TMs
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5@% Class NP

 Verification algorithm intuition

— Verifier views things from "managerial" viewpoint.

— Verifier doesn't determine whether w e L on its own;
rather, it checks with a proposed hint whether w € L.

« Algorithm V((w, c) ) is a verifier for language L if for every string w,
w e L iff there exists a string ¢ such that V({w, c)) accepts.

\ "certificate" or "witnhess"

The running time of a verifier is measured only in terms of length of w.
A polynomial-time verifier runs in time polynomial in |w| and has
certificate ¢ of length polynomial in w:

i.e., [c|=O(|w|*) for some constant k.
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3%52‘ The class NP

4 )

NP Is the class of languages that have polynomial-time
verifiers.

I /
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3%% Examples of languages in NP

« COMPOSITES ={(x) | x = pgq, forintp,q > 1}
» certificate: integer p > 1 that divides x
such a certificate exists Iff x 1s composite

* verifier
V =" Oninput {x,p), where x and p are integers:

1. fp<1orp=x,reject.
2. Else if x iIs a multiple of p, accept. O.w. reject.”
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f‘% Examples of languages in NP

« UHamCycle = {(G) | G is an undirected graph that contains a
cycle C that visits each node exactly once}

» certificate C: Hamiltonian cycle (i.e., permutation of the nodes)

graph G certificate C
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g Examples of languages in NP

« UHamCycle = {(G) | G is an undirected graph that contains a
cycle C that visits each node exactly once}

» certificate C: Hamiltonian cycle (i.e., permutation of the nodes)

 verifier V =" On input (G, C):
1. Accept if
2. each node of G appears in C exactly once
3. thereis an edge between every pair of

adjacent nodes in C
4. O.w. reject.”
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a§§ Examples of languages in NP: SAT

« Boolean variables: variables that can take on values T/F (or 1/0)

« Boolean operations: v, A, and —

« Boolean formula: expression with Boolean variables and ops
Example: (x; VX3) A x5

« An assignment of Os and 1s to the variables satisfies formula ¢ if

It makes it evaluate to 1.

@ Is satisfiable If there exists an assignment that satisfies it.

SAT ={() | ¢ is a satisfiable Boolean formula}.
Prove: SAT € NP.
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5@% Classes P, NP, EXP

« P. Languages for which there is a poly-time algorithm.
algorithm that runs in time O(n*) for some k
« EXP. Languages for which there is an exponential-time
algorithm.
algorithm that runs in time O(Z”k) for some k
« NP. Languages for which there is a poly-time verifier.

« Lemma. P < NP.
« Lemma. NP < EXP.

« Lemma. A language L is in NP iff L can be decided by a
polynomial-time nondeterministic TM.
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11/15/2018

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gbdel]

— Is the decision problem as easy as the verification problem?
— Clay $1 million prize.

If P=NP If p=Np would break RSA cryptography
(and potentially collapse economy)

If yes: Efficient algorithms for UHamPath, SAT, TSP, factoring
If no: No efficient algorithms possible for these problems.

Consensus opinion on P = NP? Probably no.

L22.15



gﬁ Classify Problems

» Desiderata: classify problems according to those that can be
solved in polynomial-time and those that cannot.

« Some problems provably require exponential time (Chapter 9):
— Given a Turing machine, does it halt in at most k steps?

— Given a board position in an n-by-n generalization of chess, can black
guarantee a win?

» Frustrating news: huge number of fundamental problems have
defied classification for decades.

« Chapters 7.4-7.5 (NP-completeness): Show that these
fundamental problems are "computationally equivalent" and
appear to be different manifestations of one really hard problem.
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3%% Polynomial-time reduction

Given languages A and B,
A<,B
If there Is a poly-time computable function f,
such that for all strings w,
we Aiff f(w) € B.

A B

Polynomial-time reductions >
are the major tool we have
tomypderstand P and NP 122.18



Implication of poly-time reductions

@s
33

Theorem. If A <, B and Be P then A€ P.
(So, If A <, Band A¢ P then B¢ P.)

Theorem. IfA<,BandB <, Cthen A<, C.
(Poly-time reductions compose.)
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GO

299 Basic reduction strategies

Basic reduction strategies

* Reduction by simple equivalence.

* Reduction from special case to general case.
« Reduction by encoding with gadgets.




gs Independent Set

Given an undirected graph G, an independent set in G Is a set of
nodes, which includes at most one endpoint of every edge.

INDEPENDENT SET — {(G, k) | G is an undirected graph which has an
Independent set with k nodes}

* |s there an independent set of size > 67

N

— Yes. @ independent set

* |s there an independent set of size > 77
— No.
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f;% Vertex Cover

Given an undirected graph G, a vertex cover in G Is a set of nodes,
which includes at least one endpoint of every edge.

VERTEX COVER— {(G, k) | G is an undirected graph which has a vertex cover
with k nodes}

e |s there vertex cover of size < 4?
— Yes.

N

‘ vertex cover

e |s there a vertex cover of size < 3?
— No.
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33 Independent Set and Vertex Cover

Claim. Sis an independent set iff V — S Is a vertex cover.
° =
— Let S be any independent set.
— Consider an arbitrary edge (u, v).
— Sisindependent=>u ¢ SorvgS = ueV-SorveV-S.
— Thus, V — S covers (u, v).

— LetV — S be any vertex cover.

— Consider two nodesu € Sand v € S.

— Then (u, v) g E since V — S is a vertex cover.

— Thus, no two nodes in S are joined by an edge = S independent set. =
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@S INDEPENDENT SET reduces to
332 VERTEX COVER

Theorem. \NpepENDENT-SET Sp VERTEX-COVER.

Proof. “On input (G, k), where G is an undirected graph and k is an
Integer,

1. Output (G,n — k), where n is the number of nodes in G.”

Correctness:

« G has an independent set of size k iff it has a vertex cover of size
n—k.
 Reduction runs in linear time.
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G | Reduction from special case to
332 general case

Basic reduction strategies

* Reduction by simple equivalence.

* Reduction from special case to general case.
« Reduction by encoding with gadgets.




