
Sofya Raskhodnikova

Intro to Theory of Computation

LECTURE 22
Last time
• Measuring complexity
• Relationship between models
• Class P

Today
• Class NP
• The P vs NP question
• Polynomial-time reductions

11/15/2018

Exercise

Consider the following algorithm A for PRIMES.

Given b, try to divide b by 2,3,…, 𝒃.

If one of them divides b, accept; o.w. reject.

If 𝒏 = input length, # of divisions A performs is

A. 𝚯(𝑛)

B. 𝚯(𝑛)

C. 𝟐𝚯(n)

D. 𝟐𝚯(𝒏)

E. None of the above.
11/15/2018 L22.2

Every CFL is in P

Recall: Chomsky Normal Form for CFGs

• Can have a rule 𝑆 → ε.

• All remaining rules are of the form

𝐴 → 𝐵𝐶 𝐴, 𝐵, 𝐶 ∈ 𝑉

𝐴 → 𝑎 𝑎 ∈ Σ

• Cannot have 𝑆 on the RHS of any rule.

Idea: use dynamic programming
– Solve smaller subproblems

– Record results in a table

– Construct solution for each subproblem from smaller solved
instances

11/15/2018

(On the board)

L22.3

Difference in time complexity

At most polynomial difference between

deterministic models.

At most exponential difference between

deterministic and nondeterministic models.

11/15/2018

all reasonable

L22.4

The class P

• The same class even if we substitute another

reasonable deterministic model.

• Roughly the class of problems realistically

solvable on a computer.

11/15/2018

P is the class of languages decidable in polynomial time on

a deterministic 1-tape TM:

𝑷 =

𝑘

𝑇𝐼𝑀𝐸 𝑛𝑘 .

L22.5

Examples of languages in P

11/15/2018

Problem Description Algorithm Yes No

MULTIPLE Is x a multiple of y?
Grade school

division
51, 17 51, 16

RELPRIME Are x and y relatively prime? Euclid (300 BCE) 34, 39 34, 51

PRIMES Is x prime? AKS (2002) 53 51

all CFLs

(e.g. the
language of

balanced
parentheses

and brackets)

Is the string in the given CFL?

(e.g., is the string of
parentheses and brackets

balanced?)

Dynamic
programming

Depends on

the

language;

e.g.

(([])[])

Depends on

the

language;

e.g.

([)], (()

LSOLVE
Is there a vector x that

satisfies Ax = b?
Gauss-Edmonds

elimination

0
2
0

1
4
3

1
−2
15

,

2
4
36

1
1
0

0
1
1

0
1
1
,

1
1
1

L22.6

Central ideas

•Poly-time as “feasible”

• most natural problems either are easy

(say in TIME(n3)) or have no known poly-time algorithms

• P =languages that can be decided in poly-time

• NP = languages for which the membership in the language is

easy to verify given a hint

• EXP = languages that can be decided in exponential time

• Poly-time Reductions: X is no harder than Y for poly-time TMs

11/15/2018 L22.7

Class NP

• Verification algorithm intuition
– Verifier views things from "managerial" viewpoint.

– Verifier doesn't determine whether w  L on its own;
rather, it checks with a proposed hint whether w  L.

• Algorithm V(〈𝑤, 𝑐〉) is a verifier for language L if for every string w,

w  L iff there exists a string c such that V(〈𝑤, 𝑐〉) accepts.

• The running time of a verifier is measured only in terms of length of w.

A polynomial-time verifier runs in time polynomial in |w| and has

certificate c of length polynomial in w:

i.e., |c|=O(𝑤 𝑘) for some constant k.

11/15/2018

"certificate" or "witness"

L22.8

The class NP

11/15/2018

NP is the class of languages that have polynomial-time

verifiers.

L22.9

Examples of languages in NP

• COMPOSITES = {〈𝑥〉 ∣ 𝑥 = 𝑝𝑞, for int 𝑝, 𝑞 > 1}

• certificate: integer 𝑝 > 1 that divides 𝑥

such a certificate exists iff 𝑥 is composite

• verifier

11/15/2018

V = `` On input 〈𝒙, 𝒑〉, where 𝒙 and 𝑝 are integers:

1. If 𝒑 ≤ 𝟏 or 𝒑 ≥ 𝒙, reject.

2. Else if 𝑥 is a multiple of 𝑝, accept. O.w. reject.’’

L22.10

Examples of languages in NP

• UHamCycle = {〈𝐺〉 ∣ 𝐺 is an undirected graph that contains a

cycle C that visits each node exactly once}

• certificate C: Hamiltonian cycle (i.e., permutation of the nodes)

11/15/2018

graph G certificate C

L22.11

Examples of languages in NP

• UHamCycle = {〈𝐺〉 ∣ 𝐺 is an undirected graph that contains a

cycle C that visits each node exactly once}

• certificate C: Hamiltonian cycle (i.e., permutation of the nodes)

• verifier

11/15/2018

V = `` On input 〈𝑮, 𝑪〉:

1. Accept if

2. each node of G appears in C exactly once

3. there is an edge between every pair of

adjacent nodes in C

4. O.w. reject.’’

L22.12

Examples of languages in NP: SAT

• Boolean variables: variables that can take on values T/F (or 1/0)

• Boolean operations: ∨, ∧, and ¬

• Boolean formula: expression with Boolean variables and ops

Example: 𝑥1 ∨ 𝑥2 ∧ 𝑥3
• An assignment of 0s and 1s to the variables satisfies formula 𝜑 if

it makes it evaluate to 1.

• 𝜑 is satisfiable if there exists an assignment that satisfies it.

SAT ={ 𝜑 ∣ 𝜑 is a satisfiable Boolean formula}.

Prove: SAT ∈ NP.

11/15/2018 L22.13

Classes P, NP, EXP

• P. Languages for which there is a poly-time algorithm.

algorithm that runs in time O(𝑛𝑘) for some 𝑘
• EXP. Languages for which there is an exponential-time

algorithm.

algorithm that runs in time O(2𝑛
𝑘
) for some 𝑘

• NP. Languages for which there is a poly-time verifier.

• Lemma. P  NP.

• Lemma. NP  EXP.

• Lemma. A language L is in NP iff L can be decided by a
polynomial-time nondeterministic TM.

11/15/2018 L22.14

P vs. NP

• Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

– Is the decision problem as easy as the verification problem?

– Clay $1 million prize.

• If yes: Efficient algorithms for UHamPath, SAT, TSP, factoring

• If no: No efficient algorithms possible for these problems.

• Consensus opinion on P = NP? Probably no.

11/15/2018

EXP NP

P

If P  NP If P = NP

EXP

P = NP

would break RSA cryptography
(and potentially collapse economy)

L22.15

Classify Problems

• Desiderata: classify problems according to those that can be

solved in polynomial-time and those that cannot.

• Some problems provably require exponential time (Chapter 9):

– Given a Turing machine, does it halt in at most k steps?

– Given a board position in an n-by-n generalization of chess, can black

guarantee a win?

• Frustrating news: huge number of fundamental problems have

defied classification for decades.

• Chapters 7.4-7.5 (NP-completeness): Show that these

fundamental problems are "computationally equivalent" and

appear to be different manifestations of one really hard problem.

L22.1611/15/2018

Polynomial-time reduction

Given languages A and B,

A≤𝑝B

if there is a poly-time computable function 𝑓,
such that for all strings 𝑤,

𝑤 ∈ 𝐴 iff 𝑓(𝑤) ∈ 𝐵.

A B

𝒇

Polynomial-time reductions
are the major tool we have
to understand P and NP11/15/2018 L22.18

Implication of poly-time reductions

Theorem. If A≤𝑝 B and B∈ 𝐏 then A∈ 𝐏.

(So, if A≤𝑝 B and A∉ 𝐏 then B∉ 𝐏.)

Theorem. If A≤𝑝 B and B≤𝑝 C then A≤𝑝 C.

(Poly-time reductions compose.)

11/15/2018 L22.19

Basic reduction strategies

• Reduction by simple equivalence.

• Reduction from special case to general case.

• Reduction by encoding with gadgets.

Basic reduction strategies

Independent Set

Given an undirected graph G, an independent set in G is a set of

nodes, which includes at most one endpoint of every edge.

INDEPENDENT SET = { 𝐺, 𝑘 ∣ 𝐺 is an undirected graph which has an

independent set with 𝑘 nodes}

• Is there an independent set of size  6?

– Yes.

• Is there an independent set of size  7?

– No.

independent set

11/15/2018 L22.21

Vertex Cover

Given an undirected graph G, a vertex cover in G is a set of nodes,

which includes at least one endpoint of every edge.

VERTEX COVER= { 𝐺, 𝑘 ∣ 𝐺 is an undirected graph which has a vertex cover

with 𝑘 nodes}

• Is there vertex cover of size  4?

– Yes.

• Is there a vertex cover of size  3?

– No.

vertex cover

11/15/2018 L22.22

Independent Set and Vertex Cover

Claim. S is an independent set iff V  S is a vertex cover.

• 

– Let S be any independent set.

– Consider an arbitrary edge (u, v).

– S is independent  u  S or v  S  u  V  S or v  V  S.

– Thus, V  S covers (u, v).

• 

– Let V  S be any vertex cover.

– Consider two nodes u  S and v  S.

– Then (u, v)  E since V  S is a vertex cover.

– Thus, no two nodes in S are joined by an edge  S independent set. ▪

11/15/2018 L22.23

INDEPENDENT SET reduces to

VERTEX COVER

Theorem. INDEPENDENT-SET ≤𝑝 VERTEX-COVER.

Proof. “On input 𝐺, 𝑘 , where 𝐺 is an undirected graph and 𝑘 is an

integer,

1. Output 𝐺, 𝑛 − 𝑘 , where 𝑛 is the number of nodes in 𝐺.”

Correctness:

• G has an independent set of size 𝑘 iff it has a vertex cover of size

𝑛 − 𝑘.

• Reduction runs in linear time.

11/15/2018 L22.24

Basic reduction strategies

• Reduction by simple equivalence.

• Reduction from special case to general case.

• Reduction by encoding with gadgets.

Reduction from special case to

general case

