Intro to Theory of Computation

L ECTURE 23

Last time

« Dynamic programming proof
thatall CFLs are In P

 Class NP

Today

* The P vs. NP question
 Polynomial-time reductions
* NP-completeness

Sofya Raskhodnikova

3/17/2016

fﬁ Classes P, NP, EXP

« P. Class of languages for which there is a poly-time algorithm.
algorithm that runs in time O(n*) for some k
« EXP. Class of languages for which there is an exponential-
time algorithm.
algorithm that runs in time O(Z"k) for some k
» NP. Class of languages for which there is a poly-time verifier.

 Lemma. P < NP.
« Lemma. NP < EXP.

« Lemma. A language L is in NP iff L can be decided by a
polynomial-time nondeterministic TM.

11/21/2019 222

33 Exercise

To prove NP < EXP, consider a language L€ NP.
Then L has a verifier V that runs in time n*.

k .
We can construct an O(2")-time TM for L as follows:
A. Oninput (w, c), where c is a certificate, run V on (w, c).”
B. Oninput w, run V on (w, c) for all possible certificates c.”

C. Oninputw, runV on (w,c) for all possible certificates c of
length at most [w|*.”

D. Oninput w, run L on {(w, c) for all possible certificates c of
length at most n/*!.”

E. None of the above.

11/21/2019 1223

6D | Nondeterministic time
332 complexity classes

4 N

NTIME(f(n)) 1s a class of languages.

A € NTIME(f(n)) means that

some nondeterministic TM M
that runs in time O(f (n)) decides A.

S /

L21.4

©S | The class NP:
3321 alternative definition

NP Is the class of languages decidable in polynomial time
on a nondeterministic TM:

NP = U NTIME (nk).
k

11/21/2019 L22.5

33| P vs. NP

 Does P =NP? [Cook 1971, Edmonds, Levin, Yablonski, Godel]

— Is the decision problem as easy as the verification problem?
— Clay $1 million prize.

3

If P=NP If p=Np would break RSA cryptography
(and potentially collapse economy)

 |If yes: Efficient algorithms for UHamPath, SAT, TSP, factoring
« If no: No efficient algorithms possible for these problems.

« Consensus opinion on P = NP? Probably no.

11/21/2019 122.6

gﬁ Classifying Problems

» Desiderata: classify problems according to those that can be
solved in polynomial-time and those that cannot.

« Some problems provably require exponential time (Chapter 9):
— Given a Turing machine, does it halt in at most k steps?

— Given a board position in an n-by-n generalization of chess, can black
guarantee a win?

» Frustrating news: huge number of fundamental problems have
defied classification for decades.

« Chapters 7.4-7.5 (NP-completeness): Show that these
fundamental problems are "computationally equivalent" and
appear to be different manifestations of one really hard problem.

7 L23.7

3%% Polynomial-time reduction

Given languages A and B,
A<,B
If there Is a poly-time computable function f,
such that for all strings w,
we Aiff f(w) € B.

A B

Polynomial-time reductions >
are the major tool we have
to understand P and NP L23.9

Implication of poly-time reductions

@s
33

Theorem. If A <, B and Be P then A€ P.
(So, If A <, Band A¢ P then B¢ P.)

Theorem. IfA<,BandB <, Cthen A<, C.
(Poly-time reductions compose.)

11/21/2019 L23.10

GO

299 Basic reduction strategies

Basic reduction strategies

* Reduction by simple equivalence.

* Reduction from special case to general case.
« Reduction by encoding with gadgets.

gs Independent Set

Given an undirected graph G, an independent set in G Is a set of
nodes, which includes at most one endpoint of every edge.

INDEPENDENT SET — {(G, k) | G is an undirected graph which has an
Independent set with k nodes}

* |s there an independent set of size > 67

N

— Yes. @ independent set

* |s there an independent set of size > 77
— No.

L25.12

f;% Vertex Cover

Given an undirected graph G, a vertex cover in G Is a set of nodes,
which includes at least one endpoint of every edge.

VERTEX COVER— {(G, k) | G is an undirected graph which has a vertex cover
with k nodes}

e |s there vertex cover of size < 4?
— Yes.

N

‘ vertex cover

e |s there a vertex cover of size < 3?
— No.

L25.13

33 Independent Set and Vertex Cover

Claim. Sis an independent set iff V — S Is a vertex cover.
° =
— Let S be any independent set.
— Consider an arbitrary edge (u, v).
— Sisindependent=>u ¢ SorvgS = ueV-SorveV-S.
— Thus, V — S covers (u, v).

— LetV — S be any vertex cover.

— Consider two nodesu € Sand v € S.

— Then (u, v) g E since V — S is a vertex cover.

— Thus, no two nodes in S are joined by an edge = S independent set. =

L25.14

@S INDEPENDENT SET reduces to
332 VERTEX COVER

Theorem. \NpepENDENT-SET Sp VERTEX-COVER.

Proof. “On input (G, k), where G is an undirected graph and k is an
Integer,

1. Output (G,n — k), where n is the number of nodes in G.”

Correctness:

« G has an independent set of size k iff it has a vertex cover of size
n—k.
 Reduction runs in linear time.

L25.15

G | Reduction from special case to
332 general case

Basic reduction strategies

* Reduction by simple equivalence.

* Reduction from special case to general case.
« Reduction by encoding with gadgets.

3%% Set Cover

Given a set U, called a universe, and a collection of its subsets
51,5, ..., 8, aset cover of U Is a subcollection of subsets whose
union is U.

ST COVER={(U, 51,82, .., Sm; K) | | U={1.2.3,4,5,6,7}
U has a set cover of size k} K=2
S;={3,7} S, =12, 4}
S,={3,4,56} S¢={5
« Sample application. S; ={1} Se= {1,2,6, 7}

— m available pieces of software.

— Set U of n capabilities that we would like our system to have.

— The ith piece of software provides the set S, — U of capabilities.
— Goal: achieve all n capabilities using fewest pieces of software.

L25.17

@S VERTEX COVER reduces to
332] SET COVER

Theorem. VERTEX-COVER S P SET-COVER.
Proof. “On input (G, k), where G = (V, E) is an undirected graph
and k is an integer,
1. Output (U, S4,S,, ..., S,y; k), where U=E and
S,={e € E|eincidenttov}”’
Correctness:
« G has a vertex cover of size k iff U has a set cover of size k.
e Reduction runs in linear time.

L25.18

3%52 Reduction by encoding with gadgets

Basic reduction strategies

* Reduction by simple equivalence.

* Reduction from special case to general case.
* Reduction by encoding with gadgets.

§§ Satisfiability

« Boolean variables: variables that can take on values T/F (or 1/0)

e Boolean operations: v, A, and o

« Boolean formula: expression with Boolean variables and ops

SAT = {(P) | ® is a satisfiable Boolean formula}

« Literal: A Boolean variable or its negation. X; or X;

« Clause: OR of literals. Ci=X VX VX
 Conjunctive normal form (CNF): AND of clauses. @ = G AC, A C3A C,

3SAT = {(P) | & is a satisfiable Boolean CNF formula, where each clause

contains exactly 3 Iite¥als}

each corresponds to a different variable

EX: (xl VX, vx3)/\(x1 VX, vx3)/\(x2 vx3)/\(x1 VX, vx3)

Yes: x; = true, X, = true x5 = false.

L25.20

33’ 3SAT reduces to INDEPENDENT SET

Theorem. 3-SATS P INDEPENDENT-SET.

Proof. “On input (@), where & is a 3CNF formula,

1. Construct graph G from ®
— G contains 3 vertices for each clause, one for each literal.
— Connect 3 literals in a clause in a triangle.
— Connect literal to each of its negations.

2. Output (G, k), where k is the number of clauses in G.”
X X, X|

L25.21

£3

23 3SAT reduces to INDEPENDENT SET

Correctness. Let k =# of clauses and = # of literals in .
® Is satisfiable iff G contains an independent set of size k.

» = Given satisfying assignment, select one true literal from each
triangle. This is an independent set of size k.

» <« Let S be an independent set of size k.
— S must contain exactly one vertex in each triangle.
— Set these literals to true, and other literals in a consistent way.
— Truth assignment is consistent and all clauses are satisfied.

Run time. O(k + £2), i.e. polynomial in the input size.

L25.22

£3
239 | Summary

» Basic reduction strategies.
— Simple equivalence: INDEPENDENT-SET = p VERTEX-COVER.
— Special case to general CaSE. VERTEX-COVER < p SET-COVER.
— Encoding with gadgets: ssat < INDEPENDENT-SET.

* Transitivity. If X<, Y andY <, Z, then X < Z.
 Proof idea. Compose the two algorithms.

¢ EX 3-SAT S P INDEPENDENT-SETS P VERTEX-COVERS P SET-COVER.

L25.23

3%% Hardest problems in NP

A language B i1s NP-complete if
1. BENP
2. Bis NP-hard,i.e.,
every language in NP iIs poly-time reducible to B.

SN\

11/21/2019 L24.24

Theorem. If
* B 1s NP-complete,
e Ce NP and

11/21/2019

L24.25

Theorem. If
* B 1s NP-complete,
e Ce NP and

Theorem. If B i1s NP-complete and B€ P then
P = NP.

(So, If B i1s NP-complete and P + NP
then there is no poly-time algorithm for B.)

11/21/2019 L24.26

11/21/2019 L24.27

