
Sofya Raskhodnikova

Intro to Theory of Computation

LECTURE 23
Last time
• Dynamic programming proof

that all CFLs are in P
• Class NP

Today
• The P vs. NP question
• Polynomial-time reductions
• NP-completeness

3/17/2016

Classes P, NP, EXP

• P. Class of languages for which there is a poly-time algorithm.

algorithm that runs in time O(𝑛𝑘) for some 𝑘

• EXP. Class of languages for which there is an exponential-
time algorithm.

algorithm that runs in time O(2𝑛
𝑘
) for some 𝑘

• NP. Class of languages for which there is a poly-time verifier.

• Lemma. P  NP.

• Lemma. NP  EXP.

• Lemma. A language L is in NP iff L can be decided by a
polynomial-time nondeterministic TM.

11/21/2019 L22.2

Exercise

To prove NP  EXP, consider a language L∈ NP.

Then L has a verifier V that runs in time 𝑛𝑘.

We can construct an O(𝟐𝑛
𝑘
)-time TM for L as follows:

A. ``On input 𝑤, 𝑐 , where c is a certificate, run V on 〈𝑤, 𝑐〉.”

B. ``On input 𝑤, run V on 〈𝑤, 𝑐〉 for all possible certificates c.”

C. ``On input 𝑤, run V on 〈𝑤, 𝑐〉 for all possible certificates c of

length at most |𝑤|𝑘.”

D. ``On input 𝑤, run L on 〈𝑤, 𝑐〉 for all possible certificates c of

length at most 𝑛|𝑤|.”

E. None of the above.

11/21/2019 L22.3

Nondeterministic time

complexity classes

11/21/2019

NTIME(𝒇(𝒏)) is a class of languages.

𝑨 ∈ NTIME(𝒇(𝒏)) means that

some nondeterministic TM M

that runs in time O(𝑓(𝑛)) decides A.

L21.4

The class NP:

alternative definition

11/21/2019

NP is the class of languages decidable in polynomial time

on a nondeterministic TM:

𝑵𝑷 =

𝑘

𝑁𝑇𝐼𝑀𝐸 𝑛𝑘 .

L22.5

P vs. NP

• Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

– Is the decision problem as easy as the verification problem?

– Clay $1 million prize.

• If yes: Efficient algorithms for UHamPath, SAT, TSP, factoring

• If no: No efficient algorithms possible for these problems.

• Consensus opinion on P = NP? Probably no.

11/21/2019

EXP NP

P

If P  NP If P = NP

EXP

P = NP

would break RSA cryptography
(and potentially collapse economy)

L22.6

7

Classifying Problems

• Desiderata: classify problems according to those that can be

solved in polynomial-time and those that cannot.

• Some problems provably require exponential time (Chapter 9):

– Given a Turing machine, does it halt in at most k steps?

– Given a board position in an n-by-n generalization of chess, can black

guarantee a win?

• Frustrating news: huge number of fundamental problems have

defied classification for decades.

• Chapters 7.4-7.5 (NP-completeness): Show that these

fundamental problems are "computationally equivalent" and

appear to be different manifestations of one really hard problem.

L23.7

Polynomial-time reduction

L23.9

Given languages A and B,

A≤𝑝B

if there is a poly-time computable function 𝑓,
such that for all strings 𝑤,

𝑤 ∈ 𝐴 iff 𝑓(𝑤) ∈ 𝐵.

A B

𝒇

Polynomial-time reductions
are the major tool we have
to understand P and NP

Implication of poly-time reductions

Theorem. If A≤𝑝 B and B∈ 𝐏 then A∈ 𝐏.

(So, if A≤𝑝 B and A∉ 𝐏 then B∉ 𝐏.)

Theorem. If A≤𝑝 B and B≤𝑝 C then A≤𝑝 C.

(Poly-time reductions compose.)

L23.1011/21/2019

Basic reduction strategies

• Reduction by simple equivalence.

• Reduction from special case to general case.

• Reduction by encoding with gadgets.

Basic reduction strategies

Independent Set

Given an undirected graph G, an independent set in G is a set of

nodes, which includes at most one endpoint of every edge.

INDEPENDENT SET = { 𝐺, 𝑘 ∣ 𝐺 is an undirected graph which has an

independent set with 𝑘 nodes}

• Is there an independent set of size  6?

– Yes.

• Is there an independent set of size  7?

– No.

independent set

L25.12

Vertex Cover

Given an undirected graph G, a vertex cover in G is a set of nodes,

which includes at least one endpoint of every edge.

VERTEX COVER= { 𝐺, 𝑘 ∣ 𝐺 is an undirected graph which has a vertex cover

with 𝑘 nodes}

• Is there vertex cover of size  4?

– Yes.

• Is there a vertex cover of size  3?

– No.

vertex cover

L25.13

Independent Set and Vertex Cover

Claim. S is an independent set iff V  S is a vertex cover.

• 

– Let S be any independent set.

– Consider an arbitrary edge (u, v).

– S is independent  u  S or v  S  u  V  S or v  V  S.

– Thus, V  S covers (u, v).

• 

– Let V  S be any vertex cover.

– Consider two nodes u  S and v  S.

– Then (u, v)  E since V  S is a vertex cover.

– Thus, no two nodes in S are joined by an edge  S independent set. ▪

L25.14

INDEPENDENT SET reduces to

VERTEX COVER

Theorem. INDEPENDENT-SET ≤𝑝 VERTEX-COVER.

Proof. “On input 𝐺, 𝑘 , where 𝐺 is an undirected graph and 𝑘 is an

integer,

1. Output 𝐺, 𝑛 − 𝑘 , where 𝑛 is the number of nodes in 𝐺.”

Correctness:

• G has an independent set of size 𝑘 iff it has a vertex cover of size

𝑛 − 𝑘.

• Reduction runs in linear time.

L25.15

Basic reduction strategies

• Reduction by simple equivalence.

• Reduction from special case to general case.

• Reduction by encoding with gadgets.

Reduction from special case to

general case

Set Cover

Given a set U, called a universe, and a collection of its subsets

𝑆1, 𝑆2, … , 𝑆𝑚, a set cover of U is a subcollection of subsets whose

union is U.

• SET COVER={ 𝑈, 𝑆1, 𝑆2, … , 𝑆𝑚; 𝑘 ∣

U has a set cover of size 𝑘}

• Sample application.

– m available pieces of software.

– Set U of n capabilities that we would like our system to have.

– The 𝑖th piece of software provides the set Si  U of capabilities.

– Goal: achieve all 𝑛 capabilities using fewest pieces of software.

U = { 1, 2, 3, 4, 5, 6, 7 }

k = 2

S1 = {3, 7} S4 = {2, 4}

S2 = {3, 4, 5, 6} S5 = {5}

S3 = {1} S6 = {1, 2, 6, 7}

L25.17

VERTEX COVER reduces to

SET COVER

Theorem. VERTEX-COVER  P SET-COVER.

Proof. “On input 𝐺, 𝑘 , where 𝐺 = (𝑉, 𝐸) is an undirected graph

and 𝑘 is an integer,

1. Output 𝑈, 𝑆1, 𝑆2, … , 𝑆𝑚; 𝑘 , where U=E and

Sv = {e  E ∣ e incident to v }”

Correctness:

• G has a vertex cover of size k iff U has a set cover of size k.

• Reduction runs in linear time.

L25.18

Basic reduction strategies

• Reduction by simple equivalence.

• Reduction from special case to general case.

• Reduction by encoding with gadgets.

Reduction by encoding with gadgets

• Boolean variables: variables that can take on values T/F (or 1/0)

• Boolean operations: ∨, ∧, and ¬

• Boolean formula: expression with Boolean variables and ops

SAT = {〈Φ〉 ∣ Φ is a satisfiable Boolean formula}

• Literal: A Boolean variable or its negation.

• Clause: OR of literals.

• Conjunctive normal form (CNF): AND of clauses.

3SAT = {〈Φ〉 ∣ Φ is a satisfiable Boolean CNF formula, where each clause

contains exactly 3 literals}

Satisfiability



C j  x1  x2  x3



xi or xi



  C1C2  C3 C4

each corresponds to a different variable

Ex:

Yes: x1 = true, x2 = true x3 = false.



x1  x2  x3   x1  x2  x3   x2  x3   x1  x2  x3 

L25.20

3SAT reduces to INDEPENDENT SET

Theorem. 3-SAT  P INDEPENDENT-SET.
Proof. “On input Φ , where Φ is a 3CNF formula,

1. Construct graph G from Φ

– G contains 3 vertices for each clause, one for each literal.

– Connect 3 literals in a clause in a triangle.

– Connect literal to each of its negations.

2. Output 𝐺, 𝑘 , where 𝑘 is the number of clauses in G.”



x2



  x1  x2  x3   x1  x2  x3   x1  x2  x4 



x3



x1



x1



x2



x4



x1



x2



x3

k = 3

G

L25.21

Correctness. Let k = # of clauses and ℓ= # of literals in .

 is satisfiable iff G contains an independent set of size k.

•  Given satisfying assignment, select one true literal from each

triangle. This is an independent set of size k.

•  Let S be an independent set of size k.

– S must contain exactly one vertex in each triangle.

– Set these literals to true, and other literals in a consistent way.

– Truth assignment is consistent and all clauses are satisfied.

Run time. O(𝑘 + ℓ2), i.e. polynomial in the input size.

L25.22

3SAT reduces to INDEPENDENT SET

Summary

• Basic reduction strategies.

– Simple equivalence: INDEPENDENT-SET  P VERTEX-COVER.

– Special case to general case: VERTEX-COVER  P SET-COVER.

– Encoding with gadgets: 3-SAT  P INDEPENDENT-SET.

• Transitivity.If X  P Y and Y  P Z, then X  P Z.

• Proof idea. Compose the two algorithms.

• Ex: 3-SAT  P INDEPENDENT-SET  P VERTEX-COVER  P SET-COVER.

L25.23

Hardest problems in NP

L24.2411/21/2019

A language B is NP-complete if

1. B ∈ 𝐍𝐏
2. B is NP-hard,i.e.,

every language in NP is poly-time reducible to B.

P NP

B

Implication of poly-time reductions

Theorem. If

• B is NP-complete,

• C∈ 𝐍𝐏 and

• B≤𝑝C
then C is NP-complete.

Theorem. If B is NP-complete and B∈ 𝐏 then
𝐏 = 𝐍𝐏.

(So, if B is NP-complete and 𝐏 ≠ 𝐍𝐏
then there is no poly-time algorithm for B.)

L24.2511/21/2019

P NP

B
C

Implication of poly-time reductions

Theorem. If

• B is NP-complete,

• C∈ 𝐍𝐏 and

• B≤𝑝C
then C is NP-complete.

Theorem. If B is NP-complete and B∈ 𝐏 then
𝐏 = 𝐍𝐏.

(So, if B is NP-complete and 𝐏 ≠ 𝐍𝐏
then there is no poly-time algorithm for B.)

L24.2611/21/2019

L24.2711/21/2019

P

NP

NP-complete

