Last time
• Dynamic programming proof that all CFLs are in P
• Class NP

Today
• The P vs. NP question
• Polynomial-time reductions
• NP-completeness

Sofya Raskhodnikova
Classes P, NP, EXP

- **P.** Class of languages for which there is a **poly-time algorithm.**

 algorithm that runs in time $O(n^k)$ for some k

- **EXP.** Class of languages for which there is an **exponential-time algorithm.**

 algorithm that runs in time $O(2^{n^k})$ for some k

- **NP.** Class of languages for which there is a **poly-time verifier.**

- **Lemma.** $P \subseteq NP.$
- **Lemma.** $NP \subseteq EXP.$
- **Lemma.** A language L is in NP iff L can be decided by a polynomial-time nondeterministic TM.
Exercise

To prove NP \subseteq EXP, consider a language $L \in$ NP. Then L has a verifier V that runs in time n^k.

We can construct an $O(2^{n^k})$-time TM for L as follows:

A. “On input $\langle w, c \rangle$, where c is a certificate, run V on $\langle w, c \rangle$.”

B. “On input w, run V on $\langle w, c \rangle$ for all possible certificates c.”

C. “On input w, run V on $\langle w, c \rangle$ for all possible certificates c of length at most $|w|^k$."

D. “On input w, run L on $\langle w, c \rangle$ for all possible certificates c of length at most $n^{|w|}$.”

E. None of the above.
Nondeterministic time complexity classes

\textbf{NTIME}(f(n)) is a class of languages.

\[A \in \text{NTIME}(f(n)) \] means that some nondeterministic TM M that runs in time \(O(f(n)) \) decides A.
NP is the class of languages decidable in polynomial time on a nondeterministic TM:

$$NP = \bigcup_{k} NTIME(n^k).$$
P vs. NP

- Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
 - Is the decision problem as easy as the verification problem?
 - Clay $1 million prize.

- If yes: Efficient algorithms for UHamPath, SAT, TSP, factoring
- If no: No efficient algorithms possible for these problems.

- Consensus opinion on P = NP? Probably no.
Classifying Problems

- **Desiderata:** classify problems according to those that can be solved in polynomial-time and those that cannot.

- **Some problems** *provably require exponential time* (Chapter 9):
 - Given a Turing machine, does it halt in at most \(k \) steps?
 - Given a board position in an \(n \)-by-\(n \) generalization of chess, can black guarantee a win?

- **Frustrating news:** huge number of fundamental problems have defied classification for decades.

- **Chapters 7.4-7.5 (NP-completeness):** Show that these fundamental problems are "computationally equivalent" and appear to be different manifestations of one really hard problem.
Given languages A and B,

\[A \leq_p B \]

if there is a \textit{poly-time} computable function \(f \), such that for all strings \(w \),

\[w \in A \text{ iff } f(w) \in B. \]

Polynomial-time reductions are the major tool we have to understand P and NP.
Implication of poly-time reductions

Theorem. If $A \leq_p B$ and $B \in \mathbf{P}$ then $A \in \mathbf{P}$.
(So, if $A \leq_p B$ and $A \notin \mathbf{P}$ then $B \notin \mathbf{P}$.)

Theorem. If $A \leq_p B$ and $B \leq_p C$ then $A \leq_p C$.
(Poly-time reductions compose.)
Basic reduction strategies

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.
Given an undirected graph G, an **independent set** in G is a set of nodes, which includes at most one endpoint of every edge.

\[\text{INDEPENDENT SET} = \{ \langle G, k \rangle \mid G \text{ is an undirected graph which has an independent set with } k \text{ nodes} \} \]

- Is there an independent set of size ≥ 6?
 - Yes.

- Is there an independent set of size ≥ 7?
 - No.
Vertex Cover

Given an undirected graph G, a **vertex cover** in G is a set of nodes, which includes at least one endpoint of every edge.

$$\text{VERTEX COVER} = \{ \langle G, k \rangle \mid G \text{ is an undirected graph which has a vertex cover with } k \text{ nodes} \}$$

- Is there vertex cover of size ≤ 4?
 - Yes.

- Is there a vertex cover of size ≤ 3?
 - No.
Claim. S is an independent set iff V – S is a vertex cover.

• ⇒
 – Let S be any independent set.
 – Consider an arbitrary edge (u, v).
 – S is independent ⇒ u ∉ S or v ∉ S ⇒ u ∈ V – S or v ∈ V – S.
 – Thus, V – S covers (u, v).

• ⇐
 – Let V – S be any vertex cover.
 – Consider two nodes u ∈ S and v ∈ S.
 – Then (u, v) ∉ E since V – S is a vertex cover.
 – Thus, no two nodes in S are joined by an edge ⇒ S independent set. ▪
Theorem. \text{INDEPENDENT-SET \leq_P VERTEX-COVER.}

Proof. “On input $\langle G, k \rangle$, where G is an undirected graph and k is an integer,

1. Output $\langle G, n - k \rangle$, where n is the number of nodes in G.”

Correctness:

- G has an independent set of size k iff it has a vertex cover of size $n - k$.
- Reduction runs in linear time.
Basic reduction strategies

• Reduction by simple equivalence.
• Reduction from special case to general case.
• Reduction by encoding with gadgets.
Set Cover

Given a set U, called a *universe*, and a collection of its subsets S_1, S_2, \ldots, S_m, a *set cover* of U is a subcollection of subsets whose union is U.

- **SET COVER=**\{$\langle U, S_1, S_2, \ldots, S_m; k \rangle \mid U \text{ has a set cover of size } k$\}

- **Sample application.**
 - m available pieces of software.
 - Set U of n capabilities that we would like our system to have.
 - The ith piece of software provides the set $S_i \subseteq U$ of capabilities.
 - Goal: achieve all n capabilities using fewest pieces of software.

Example

- $U = \{1, 2, 3, 4, 5, 6, 7\}$
- $k = 2$
- $S_1 = \{3, 7\}$
- $S_2 = \{3, 4, 5, 6\}$
- $S_3 = \{1\}$
- $S_4 = \{2, 4\}$
- $S_5 = \{5\}$
- $S_6 = \{1, 2, 6, 7\}$
Theorem. \textsc{vertex-cover} \leq_{\text{P}} \textsc{set-cover}.

Proof. “On input \langle G, k \rangle, where \(G = (V, E) \) is an undirected graph and \(k \) is an integer,

1. Output \langle U, S_1, S_2, \ldots, S_m; k \rangle, where \(U = E \) and
 \[S_v = \{ e \in E \mid e \text{ incident to } v \} \]

Correctness:

- \(G \) has a vertex cover of size \(k \) iff \(U \) has a set cover of size \(k \).
- Reduction runs in linear time.
Basic reduction strategies

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.
Satisfiability

- **Boolean variables:** variables that can take on values T/F (or 1/0)
- **Boolean operations:** \(\lor, \land, \text{ and } \neg \)
- **Boolean formula:** expression with Boolean variables and ops

\[
\text{SAT} = \{ \langle \Phi \rangle \mid \Phi \text{ is a satisfiable Boolean formula} \}
\]

- **Literal:** A Boolean variable or its negation. \(x_i \) or \(\overline{x_i} \)
- **Clause:** OR of literals. \(C_j = x_1 \lor \overline{x_2} \lor x_3 \)
- **Conjunctive normal form (CNF):** AND of clauses. \(\Phi = C_1 \land C_2 \land C_3 \land C_4 \)

3SAT = \{ \langle \Phi \rangle \mid \Phi \text{ is a satisfiable Boolean CNF formula, where each clause contains exactly 3 literals} \}

Ex: \(\overline{x_1} \lor x_2 \lor x_3 \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3}) \)

Yes: \(x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false} \).
Theorem. \(3\text{-SAT} \leq \text{P INDEPENDENT-SET.}\)

Proof. “On input \(\langle \Phi \rangle\), where \(\Phi\) is a 3CNF formula,

1. Construct graph \(G\) from \(\Phi\)
 - \(G\) contains 3 vertices for each clause, one for each literal.
 - Connect 3 literals in a clause in a triangle.
 - Connect literal to each of its negations.

2. Output \(\langle G, k \rangle\), where \(k\) is the number of clauses in \(G\).”

\[
\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)
\]
Correctness. Let \(k = \# \) of clauses and \(\ell = \# \) of literals in \(\Phi \).

\(\Phi \) is satisfiable iff \(G \) contains an independent set of size \(k \).

- \(\Rightarrow \) Given satisfying assignment, select one true literal from each triangle. This is an independent set of size \(k \).

- \(\Leftarrow \) Let \(S \) be an independent set of size \(k \).
 - \(S \) must contain exactly one vertex in each triangle.
 - Set these literals to true, and other literals in a consistent way.
 - Truth assignment is consistent and all clauses are satisfied.

Run time. \(O(k + \ell^2) \), i.e. polynomial in the input size.
Summary

• Basic reduction strategies.
 – Simple equivalence: \text{INDEPENDENT-SET} \equiv_p \text{VERTEX-COVER}.
 – Special case to general case: \text{VERTEX-COVER} \leq_p \text{SET-COVER}.
 – Encoding with gadgets: \text{3-SAT} \leq_p \text{INDEPENDENT-SET}.

• Transitivity. If \(X \leq_p Y\) and \(Y \leq_p Z\), then \(X \leq_p Z\).
• Proof idea. Compose the two algorithms.
• Ex: \text{3-SAT} \leq_p \text{INDEPENDENT-SET} \leq_p \text{VERTEX-COVER} \leq_p \text{SET-COVER}.
A language B is **NP-complete** if

1. $B \in \text{NP}$
2. B is **NP-hard**, i.e.,

 every language in NP is poly-time reducible to B.

Diagram:

- **P** (Pолиномиальное время)
- **NP** (Нечетко полиномиальное время)
- **B**

- Arrows indicate that every language in NP is poly-time reducible to B.
Theorem. If

- B is \(\text{NP} \)-complete,
- \(C \in \text{NP} \) and
- \(B \leq_p C \)

then \(C \) is \(\text{NP} \)-complete.
Implication of poly-time reductions

Theorem. If
- B is NP-complete,
- $C \in \text{NP}$ and
- $B \leq_{p} C$
then C is NP-complete.

Theorem. If B is NP-complete and $B \in \text{P}$ then $\text{P} = \text{NP}$.

(So, if B is NP-complete and $\text{P} \neq \text{NP}$
then there is no poly-time algorithm for B.)