Intro to Theory of Computation

LECTURE 23

Last time

- Dynamic programming proof that all CFLs are in P
- Class NP

Today

- The P vs. NP question
- Polynomial-time reductions
- NP-completeness

Sofya Raskhodnikova

CS 332

Classes P, NP, EXP

- P. Class of languages for which there is a poly-time algorithm. algorithm that runs in time $O(n^k)$ for some k
- EXP. Class of languages for which there is an exponential-time algorithm.

algorithm that runs in time $O(2^{n^k})$ for some k

- NP. Class of languages for which there is a poly-time verifier.
- Lemma. $P \subseteq NP$.
- Lemma. NP \subseteq EXP.
- Lemma. A language L is in NP iff L can be decided by a polynomial-time nondeterministic TM.

11/21/2019 L22.2

Exercise

To prove NP \subseteq EXP, consider a language L \in NP.

Then L has a verifier V that runs in time n^k .

We can construct an $O(2^{n^k})$ -time TM for L as follows:

- A. `On input $\langle w, c \rangle$, where c is a certificate, run V on $\langle w, c \rangle$."
- B. 'On input w, run V on $\langle w, c \rangle$ for all possible certificates c."
- C. `On input w, run V on $\langle w, c \rangle$ for all possible certificates c of length at most $|w|^k$."
- D. `On input w, run L on $\langle w, c \rangle$ for all possible certificates c of length at most $n^{|w|}$."
- E. None of the above.

11/21/2019

Nondeterministic time complexity classes

NTIME(f(n)) is a class of languages. $A \in \mathsf{NTIME}(f(n))$ means that some nondeterministic TM M that runs in time $\mathsf{O}(f(n))$ decides A.

11/21/2019 L21.4

CS The class NP: alternative definition

NP is the class of languages decidable in polynomial time on a *nondeterministic* TM:

$$NP = \bigcup_{k} NTIME(n^k).$$

11/21/2019 L22.5

P vs. NP

- Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
 - Is the decision problem as easy as the verification problem?
 - Clay \$1 million prize.

- If yes: Efficient algorithms for UHamPath, SAT, TSP, factoring
- If no: No efficient algorithms possible for these problems.
- Consensus opinion on P = NP? Probably no.

11/21/2019 L22.6

Classifying Problems

- **Desiderata:** classify problems according to those that can be solved in polynomial-time and those that cannot.
- Some problems *provably require exponential time* (Chapter 9):
 - Given a Turing machine, does it halt in at most k steps?
 - Given a board position in an *n*-by-*n* generalization of chess, can black guarantee a win?
- **Frustrating news:** huge number of fundamental problems have defied classification for decades.
- Chapters 7.4-7.5 (NP-completeness): Show that these fundamental problems are "computationally equivalent" and appear to be different manifestations of one really hard problem.

Polynomial-time reduction

Given languages A and B, $A \leq_{p} B$

if there is a *poly-time* computable function f, such that for all strings w, $w \in A$ iff $f(w) \in B$.

Polynomial-time reductions are the major tool we have to understand P and NP

Implication of poly-time reductions

Theorem. If $A \leq_p B$ and $B \in P$ then $A \in P$. (So, if $A \leq_p B$ and $A \notin P$ then $B \notin P$.)

Theorem. If $A \leq_{p} B$ and $B \leq_{p} C$ then $A \leq_{p} C$. (Poly-time reductions compose.)

11/21/2019 L23.10

Basic reduction strategies

Basic reduction strategies

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

Independent Set

Given an undirected graph G, an **independent set** in G is a set of nodes, which includes at most one endpoint of every edge.

INDEPENDENT SET = $\{\langle G, k \rangle \mid G \text{ is an undirected graph which has an } \}$

independent set with *k* nodes}

• Is there an independent set of size ≥ 6 ?

- Yes.

independent set

- Is there an independent set of size ≥ 7 ?
 - No.

Vertex Cover

Given an undirected graph G, a vertex cover in G is a set of nodes, which includes at *least* one endpoint of every edge.

VERTEX COVER $= \{\langle G, k \rangle \mid G \text{ is an undirected graph which has a vertex cover} \}$

with k nodes}

- Is there vertex cover of size ≤ 4 ?
 - Yes.

- vertex cover
- Is there a vertex cover of size ≤ 3?
 - No.

CS 332

Independent Set and Vertex Cover

Claim. S is an independent set iff V - S is a vertex cover.

- $\bullet \implies$
 - Let S be any independent set.
 - Consider an arbitrary edge (u, v).
 - S is independent \Rightarrow u \notin S or v \notin S \Rightarrow u ∈ V S or v ∈ V S.
 - Thus, V S covers (u, v).
- - Let V S be any vertex cover.
 - Consider two nodes $u \in S$ and $v \in S$.
 - Then (u, v) ∉ E since V S is a vertex cover.
 - Thus, no two nodes in S are joined by an edge \Rightarrow S independent set.

INDEPENDENT SET reduces to VERTEX COVER

Theorem. Independent-set \leq_p vertex-cover.

Proof. "On input $\langle G, k \rangle$, where G is an undirected graph and k is an integer,

1. Output $\langle G, n-k \rangle$, where n is the number of nodes in G."

Correctness:

- G has an independent set of size k iff it has a vertex cover of size n k.
- Reduction runs in linear time.

Reduction from special case to general case

Basic reduction strategies

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

Set Cover

Given a set U, called a *universe*, and a collection of its subsets $S_1, S_2, ..., S_m$, a set cover of U is a subcollection of subsets whose union is U.

- SET COVER= $\{\langle U, S_1, S_2, ..., S_m; k \rangle \mid$ U has a set cover of size $k\}$
- $U = \{ 1, 2, 3, 4, 5, 6, 7 \}$ k = 2 $S_1 = \{3, 7\} \qquad S_4 = \{2, 4\}$ $S_2 = \{3, 4, 5, 6\} \qquad S_5 = \{5\}$ $S_3 = \{1\} \qquad S_6 = \{1, 2, 6, 7\}$

- Sample application.
 - m available pieces of software.
 - Set U of n capabilities that we would like our system to have.
 - The *i*th piece of software provides the set $S_i \subseteq U$ of capabilities.
 - Goal: achieve all *n* capabilities using fewest pieces of software.

CS 332

VERTEX COVER reduces to SET COVER

Theorem. Vertex-cover \leq_{P} set-cover.

Proof. "On input $\langle G, k \rangle$, where G = (V, E) is an undirected graph and k is an integer,

1. Output $\langle U, S_1, S_2, ..., S_m; k \rangle$, where U=E and $S_v = \{e \in E \mid e \text{ incident to } v \}$ "

Correctness:

- G has a vertex cover of size k iff U has a set cover of size k.
- Reduction runs in linear time.

Reduction by encoding with gadgets

Basic reduction strategies

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

Satisfiability

- **Boolean variables:** variables that can take on values T/F (or 1/0)
- **Boolean operations:** \vee , \wedge , and \neg
- Boolean formula: expression with Boolean variables and ops

SAT = $\{\langle \Phi \rangle \mid \Phi \text{ is a satisfiable Boolean formula}\}$

- Literal: A Boolean variable or its negation. x_i or x_i
- Clause: OR of literals. $C_j = x_1 \vee \overline{x_2} \vee x_3$
- Conjunctive normal form (CNF): AND of clauses. $\Phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$

 $3SAT = \{\langle \Phi \rangle \mid \Phi \text{ is a satisfiable Boolean CNF formula, where each clause contains exactly 3 literals}$

each corresponds to a different variable

Ex:
$$(\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})$$

Yes: $x_1 = \text{true}, x_2 = \text{true } x_3 = \text{false}.$

3SAT reduces to INDEPENDENT SET

Theorem. $3-SAT \leq p$ INDEPENDENT-SET.

Proof. "On input $\langle \Phi \rangle$, where Φ is a 3CNF formula,

- 1. Construct graph G from Φ
 - G contains 3 vertices for each clause, one for each literal.
 - Connect 3 literals in a clause in a triangle.
 - Connect literal to each of its negations.
- 2. Output $\langle G, k \rangle$, where k is the number of clauses in G."

$$\Phi = \left(\overline{x_1} \vee x_2 \vee x_3\right) \wedge \left(x_1 \vee \overline{x_2} \vee x_3\right) \wedge \left(\overline{x_1} \vee x_2 \vee x_4\right)$$

k = 3

3SAT reduces to INDEPENDENT SET

Correctness. Let k = # of clauses and $\ell = \#$ of literals in Φ . Φ is satisfiable iff G contains an independent set of size k.

- ⇒ Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k.
- \Leftarrow Let S be an independent set of size k.
 - S must contain exactly one vertex in each triangle.
 - Set these literals to true, and other literals in a consistent way.
 - Truth assignment is consistent and all clauses are satisfied.

Run time. $O(k + \ell^2)$, i.e. polynomial in the input size.

CS 332

Summary

- Basic reduction strategies.
 - Simple equivalence: independent-set \equiv_{p} vertex-cover.
 - Special case to general case: vertex-cover \leq p set-cover.
 - Encoding with gadgets: $3-SAT \le P$ Independent-set.

- Transitivity.If $X \le_P Y$ and $Y \le_P Z$, then $X \le_P Z$.
- Proof idea. Compose the two algorithms.
- Ex: $3-SAT \le P$ independent-set $\le P$ vertex-cover $\le P$ set-cover.

Hardest problems in NP

A language B is **NP-complete** if

- 1. $B \in \mathbf{NP}$
- 2. B is **NP-hard**,i.e., every language in NP is poly-time reducible to B.

11/21/2019

Implication of poly-time reductions

Theorem. If

- B is **NP**-complete,
- $C \in \mathbf{NP}$ and
- $B \le_p C$ then C is **NP**-complete.

11/21/2019

Implication of poly-time reductions

Theorem. If

- B is **NP**-complete,
- $C \in \mathbf{NP}$ and
- $B \le_p C$ then C is **NP**-complete.

Theorem. If B is NP-complete and $B \in P$ then P = NP.

(So, if B is NP-complete and $P \neq NP$ then there is no poly-time algorithm for B.)

11/21/2019 L24.27