Intro to Theory of Computation

CS 332

LECTURE 24

Last time
- Class NP
- Polynomial-time reductions

Today
- Polynomial-time reductions
- NP-completeness

Sofya Raskhodnikova

3/17/2016
Basic reduction strategies

• Reduction by simple equivalence.
• Reduction from special case to general case.
• Reduction by encoding with gadgets.
Set Cover

Given a set U, called a universe, and a collection of its subsets \(S_1, S_2, \ldots, S_m \), a set cover of U is a subcollection of subsets whose union is U.

- **SET COVER** = \{ \langle U, S_1, S_2, \ldots, S_m; k \rangle \mid U \text{ has a set cover of size } k \}

Sample application.

- m available pieces of software.
- Set U of n capabilities that we would like our system to have.
- The \(i \)th piece of software provides the set \(S_i \subseteq U \) of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

U = \{ 1, 2, 3, 4, 5, 6, 7 \}

k = 2

\[S_1 = \{3, 7\} \]
\[S_2 = \{3, 4, 5, 6\} \]
\[S_3 = \{1\} \]
\[S_4 = \{2, 4\} \]
\[S_5 = \{5\} \]
\[S_6 = \{1, 2, 6, 7\} \]
Theorem. \textsc{vertex-cover} \leq_p \textsc{set-cover}.

Proof. “On input \langle G, k \rangle, where \(G = (V, E) \) is an undirected graph and \(k \) is an integer,

1. Output \langle U, S_1, S_2, \ldots, S_m; k \rangle, where \(U=E \) and

\[
S_v = \{ e \in E \mid e \text{ incident to } v \}
\]

Correctness:

- \(G \) has a vertex cover of size \(k \) iff \(U \) has a set cover of size \(k \).
- Reduction runs in linear time.
Basic reduction strategies

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.
Boolean variables: variables that can take on values T/F (or 1/0)

Boolean operations: \(\lor, \land, \text{ and } \neg \)

Boolean formula: expression with Boolean variables and ops

\[\text{SAT} = \{ \langle \Phi \rangle \mid \Phi \text{ is a satisfiable Boolean formula} \} \]

Literal: A Boolean variable or its negation.

Clause: OR of literals.

Conjunctive normal form (CNF): AND of clauses.

\[\text{3SAT} = \{ \langle \Phi \rangle \mid \Phi \text{ is a satisfiable Boolean CNF formula, where each clause contains exactly 3 literals} \} \]

Each corresponds to a different variable

\[\text{Ex: } \left(\bar{x}_1 \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \bar{x}_2 \lor x_3 \right) \land \left(x_2 \lor x_3 \right) \land \left(\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3 \right) \]

Yes: \(x_1 = \text{true, } x_2 = \text{true, } x_3 = \text{false.} \)
3SAT reduces to INDEPENDENT SET

Theorem. 3-SAT \leq_p INDEPENDENT-SET.

Proof. “On input $\langle \Phi \rangle$, where Φ is a 3CNF formula,

1. Construct graph G from Φ
 - G contains 3 vertices for each clause, one for each literal.
 - Connect 3 literals in a clause in a triangle.
 - Connect literal to each of its negations.

2. Output $\langle G, k \rangle$, where k is the number of clauses in G.”

$$
\Phi = \overline{x_1} \lor x_2 \lor x_3 \lor x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_1} \lor x_2 \lor x_4
$$

$k = 3$
Correctness. Let $k = \# \text{ of clauses and } \ell = \# \text{ of literals in } \Phi$.

Φ is satisfiable iff G contains an independent set of size k.

- \Rightarrow Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k.

- \Leftarrow Let S be an independent set of size k.
 - S must contain exactly one vertex in each triangle.
 - Set these literals to true, and other literals in a consistent way.
 - Truth assignment is consistent and all clauses are satisfied.

Run time. $O(k + \ell^2)$, i.e. polynomial in the input size.
Summary

- **Basic reduction strategies.**
 - Simple equivalence: \(\text{INDEPENDENT-SET} \equiv_p \text{VERTEX-COVER} \).
 - Special case to general case: \(\text{VERTEX-COVER} \leq_p \text{SET-COVER} \).
 - Encoding with gadgets: \(3\text{-SAT} \leq_p \text{INDEPENDENT-SET} \).

- **Transitivity.** If \(X \leq_p Y \) and \(Y \leq_p Z \), then \(X \leq_p Z \).

- **Proof idea.** Compose the two algorithms.

- **Ex:** \(3\text{-SAT} \leq_p \text{INDEPENDENT-SET} \leq_p \text{VERTEX-COVER} \leq_p \text{SET-COVER} \).
A language B is **NP-complete** if

1. $B \in \text{NP}$
2. B is **NP-hard**, i.e.,

 every language in NP is poly-time reducible to B.

P ⊆ NP
Implication of poly-time reductions

Theorem. If

- B is NP-complete,
- $C \in \text{NP}$ and
- $B \leq_p C$

then C is NP-complete.
Implication of poly-time reductions

Theorem. If

- B is \textbf{NP}-complete,
- $C \in \textbf{NP}$ and
- $B \leq_p C$

then C is \textbf{NP}-complete.

Theorem. If B is \textbf{NP}-complete and $B \in \textbf{P}$ then $\textbf{P} = \textbf{NP}$.

(So, if B is \textbf{NP}-complete and $\textbf{P} \neq \textbf{NP}$ then there is no poly-time algorithm for B.)

11/30/2017
\(\text{BA}_{\text{NTM}} = \{ \langle M, x, t \rangle \mid M \text{ is an NTM that accepts } x \text{ in at most } t \text{ steps} \} \)

Theorem. \(\text{BA}_{\text{NTM}} \) is NP-Complete.

1. \(\text{BA}_{\text{NTM}} \in \text{NP} \):

 The list of guesses \(M \) makes to accept \(x \) in \(t \) steps is the certificate that \(\langle M, x, t \rangle \in \text{BA}_{\text{NTM}} \).

2. For all \(A \in \text{NP} \), \(A \leq_p \text{BA}_{\text{NTM}} \).

 \(A \in \text{NP} \) iff there is an NTM \(N \) for \(A \) that runs in time \(O(n^k) \).

 Let \(f_A(w) = \langle N, w, c \mid w \mid^k \rangle \).

 \(\langle N, w, c \mid w \mid^k \rangle \in \text{BA}_{\text{NTM}} \iff N \text{ accepts } w \iff w \in A. \)
CIRCUIT-SAT is similar to 3SAT, but it is about circuits, not formulas.

Theorem. CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973]

A circuit is built out of AND, OR and NOT gates.

A circuit is **satisfiable** if one can set the circuit inputs, so that the output is 1.
CIRCUIT-SAT = \{ \langle C \rangle | C \text{ is a satisfiable circuit} \}.

\[< \text{1 0 1} > \]
Canonical NP-Complete Problem

Theorem. 3SAT is NP-complete. (Book)