Intro to Theory of Computation

LECTURE 25

Last time

- Cook-Levin Theorem
- Examples of NP-complete languages

Today

- Space complexity
- The class PSPACE

Sofya Raskhodnikova

GS 332

Question

- 1. $3SAT \leq_p A_{TM}$
- 2. A_{TM} is NP-complete
- A. (1) and (2) are both true
- **B.** (1) and (2) are both false
- C. (1) is true and (2) is false
- D. (2) is true and (1) is false
- **E.** At least one of (1) and (2) is an open question

Space analysis

If M is a TM and $f: \mathbb{N} \to \mathbb{N}$ then

"M runs in space f(n)" means

for **every** input $w \in \Sigma^*$ of length n,

M on w uses at most f(n) tape cells.

• If M is a nondterministic TM that halts on all inputs then f(n) is the maximum number of cells M uses on any input of length n.

Space complexity classes

SPACE(f(n)) is a class of languages. $A \in \text{SPACE}(f(n))$ means that some 1-tape TM M that runs in space O(f(n)) decides A.

CS 332

Prove: $SAT \in SPACE(n)$

- M = `` On input $\langle \phi \rangle$, where ϕ is a Boolean formula, with variables $x_1, ..., x_\ell$:
 - 1. For each truth assignment to $x_1, ..., x_\ell$
 - 2. Evaluate ϕ on that truth assignment.
 - 3. Accept if ϕ ever evaluates to 1. O.w. reject."

• If n is the input length, M uses space O(n).

Space complexity classes

NSPACE(f(n)) is a class of languages. $A \in \mathsf{NSPACE}(f(n))$ means that some 1-tape *nondeterministic* TM M that runs in space $\mathsf{O}(f(n))$ decides A.

CS 332

Prove: $ALL_{NFA} \in NSPACE(n)$

- $\mathbf{ALL}_{NFA} = \{ \langle M \rangle | M \text{ is an NFA and } L(M) = \Sigma^* \}$
- N = On input $\langle M \rangle$, where M is an NFA:
 - 1. Place marker on the start state of M.
 - 2. Repeat \blacksquare times where q is the # of states of M:
 - 3. Nondeterministically select $a \in \Sigma$.
 - 4. Adjust the markers to simulate M reading a.
 - 5. Accept if at any point none of the markers are on an accept state. O.w. reject."
- If n is the input length, N is an NTM that uses space O(n).

CS 332

Savitch's theorem

Theorem. Let f(n) be a function, where $f(n) \ge n$. NSPACE $(f(n)) \subseteq SPACE(f^2(n))$.

Savitch's theorem

Theorem. Let f(n) be a function, where $f(n) \ge n$. NSPACE $(f(n)) \subseteq SPACE(f^2(n))$.

Proof:

- Let N be an NTM deciding a language A in f(n) space.
- We give a deterministic TM M deciding A.
- More general problem:
 - Given configurations c_1 , c_2 of N and integer t, decide whether N can go from c_1 to c_2 in $\leq t$ steps on some nondeterministic path.
 - Procedure CANYIELD(c_1 , c_2 , t)

Savitch's theorem

Theorem. Let f(n) be a function, where $f(n) \ge n$. NSPACE $(f(n)) \subseteq SPACE(f^2(n))$.

Proof: (the rest of the proof on the board) CANYIELD = "On input $\langle c_1, c_2, t \rangle$:

- 1. If t = 1, accept if $c_1 = c_2$ or c_1 yields c_2 in one transition. O.w. reject.
- 2. If t > 1, then \forall configs c_{mid} of N with $\leq f(n)$ cells:
- 3. Run CANYIELD($\langle c_1, c_{mid}, t/2 \rangle$).
- 4. Run CANYIELD($\langle c_{mid}, c_2, t/2 \rangle$).
- 5. If both runs accept, accept.
- 6. Reject."

The class PSPACE

PSPACE is the class of languages decidable in polynomial space on a *deterministic* TM:

$$PSPACE = \bigcup_{k} SPACE(n^{k}).$$

- NPSPACE the same, but for NTMs.
- By Savitch's Theorem,

PSPACE = NPSPACE

Relationships between classes

1. $P \subseteq NP \subseteq PSPACE \subseteq EXPTIME$

Recall: a TM that runs

in space f(n) has

 $\leq f(n)2^{O(f(n))}$

configurations

2. P≠ EXPTIME

Which containments in (1) are proper?

Unknown!

Hardest problems in PSPACE

A language B is **PSPACE-complete** if

- B∈ PSPACE
- 2. B is **PSPACE-hard**,i.e., every language in PSPACE is poly-time reducible to B.

The TQBF problem

- **Boolean variables:** variables that can take on values T/F (or 1/0)
- Boolean operations: V, ∧, and ¬
- Boolean formula: expression with Boolean variables and ops
- Quantified Boolean formula: Boolean formula with quantifiers (∀, ∃)
- Fully Quantified Boolean formula: all variables have quantifiers (\forall, \exists) We only consider the form where all quantifiers appear in the beginning.

Ex.
$$\forall x \exists y [(x \lor y) \land (\bar{x} \lor \bar{y})]$$
 True $\exists y \forall x [(x \lor y) \land (\bar{x} \lor \bar{y})]$ **False**

- Each fully quantified Boolean formula is either true or false.
- The order of quantifiers matters!

TQBF = $\{\langle \phi \rangle \mid \phi \text{ is a true fully quantified Boolean formula}\}$

TQBF is **PSPACE-complete**

- 1. TQBF is in PSPACE
- 2. TQBF is PSPACE-hard

Prove: TQBF ∈ PSPACE

- T = `` On input $\langle \phi \rangle$, where ϕ is a fully quantified Boolean formula:
 - 1. If ϕ has no quantifiers, it has only constants (and no variables). Evaluate ϕ . If true, accept; o.w., reject.
 - 2. If ϕ is of the form $\exists x \psi$, recursively call T on ψ with x = 0 and then on ψ with x = 1. If either call accepts, accept; o.w., reject.
 - 3. If ϕ is of the form $\forall x \psi$, recursively call T on ψ with x = 0 and then on ψ with x = 1. If both calls accept, accept; o.w., reject."
- If n is the input length, T uses space O(n).

Question

If TQBF is in P then it implies that

- $\mathbf{A} \cdot \mathbf{P} = \mathbf{NP}$
- **B.** P = PSPACE
- $\mathbf{C.} \mathbf{P} = \mathbf{EXPTIME}$
- D. (A) and (B) are true
- **E.** (A), (B), (C) are true