Review: Conditional Probability

Conditional Probability

The conditional probability of event E given event F is

$$\Pr(E \mid F) = \frac{\Pr(E \cap F)}{\Pr(F)}$$

Well defined only if $Pr(F) \neq 0$

Review question

Card dealing

We deal two cards. What is the probability that the second card is an ace, given that the first is an ace?

- A. 3/52
- **B**. 3/51
- C. 4/52
- D. 5/52
- E. None of the answers above are correct.

For any two events E_1 and E_2 ,

$$Pr(E_1 \cap E_2) = Pr(E_1) \cdot Pr(E_2 | E_1).$$

For all events E_1, \ldots, E_n ,

$$\Pr(\cap_{i=1}^n E_i) = \Pr(E_1) \cdot \Pr(E_2|E_1) \cdot \dots \cdot (E_n|\cap_{i=1}^{n-1} E_i)$$

Law of Total Probability

For any two events A and E,

$$Pr(A) = Pr(A \cap E) + Pr(A \cap E)$$
$$= Pr(A|E) \cdot Pr(E) + Pr(A|\overline{E}) \cdot Pr(\overline{E})$$

Let A be an event and let $E_1, ..., E_n$ be mutually disjoint events whose union is Ω .

$$Pr(A) = \sum_{i \in [n]} Pr(A \cap E_i) = \sum_{i \in [n]} Pr(A \mid E_i) \cdot Pr(E_i).$$

Bayes' Law

For any two events A and E with $Pr(A) \neq 0$,

$$Pr(E|A) = \frac{Pr(A|E) \cdot Pr(E)}{Pr(A)}$$

Let A be an event with $Pr(A) \neq 0$ and let $E_1, ..., E_n$ be mutually disjoint events whose union is Ω .

$$\Pr(E_j|A) = \frac{\Pr(E_j \cap A)}{\Pr(A)} = \frac{\Pr(A|E_j) \cdot \Pr(E_j)}{\sum_{i \in [n]} \Pr(A \mid E_i) \cdot \Pr(E_i)}$$