

Randomness in Computing

LECTURE 2

Last time

- Verifying polynomial identities
- Probability amplification
- Probability review
- Card magic trick

Discussions

- Conditional Probability
- Product Rule
- Law of Total Probability
- Bayes' Law

Today

- More probability amplification
- Verifying matrix multiplication

Card dealing

We deal two cards. What is the probability that the second card is an ace, given that the first is an ace?

A. 3/52

- **B.** 3/51
- **C**. 4/52

D. 5/52

E. None of the answers above are correct.

Toss a fair coin three times.

Let E_i be the event that the *i*-th toss is HEADS.

Let $E = E_1 \cap E_2 \cap E_3$.

What is the probability of E?

- **A.** $Pr(E_1) \cdot Pr(E_2|E_1) \cdot Pr(E_3|E_1 \cap E_2)$
- **B**. $\Pr(E_1) \cdot \Pr(E_2) \cdot \Pr(E_3)$
- C. Both A and B are correct.
- **D**. Neither A nor B is correct.

CS Probability Amplification

• Our algorithm for verifying polynomial identities accepts incorrectly with probability $\leq \frac{d}{100d} = \frac{1}{100}$

Idea: Repeat the algorithm and accept if all iterations accept.

Pr[error in all k iterations]

$$\leq \left(\frac{1}{100}\right)^k$$

CS 537 Sampling without replacement

- Let E_i be the event that we choose a root in iteration *i* Pr[error in all *k* iterations] $= \Pr[E_1 \cap \dots \cap E_k]$ $= \Pr[E_1] \cdot \Pr[E_2|E_1] \cdot \dots \cdot \Pr[E_k|E_1 \cap \dots \cap E_{k-1}]$
- It is 0 if k > d.

If
$$k \le d$$
, then $\Pr[E_j | E_1 \cap \dots \cap E_{j-1}] = \frac{d - (j-1)}{100d - (j-1)}$

$$\Pr[\text{error in all } k \text{ iterations}] \le \left(\frac{1}{100}\right)^k$$

CS §1.3 (MU) Verifying Matrix Multiplication

Task: Given three $n \times n$ matrices A, B, C, verify if $A \cdot B = C$.

Matrix multiplication algorithms:

- Naïve $O(n^3)$ time
- Strassen $O(n^{\log_2 7}) \approx O(n^{2.81})$ time
- World record $O(n^{2.373...})$ time

[Coppersmith-Winograd `87, Vassilevska Williams `13, LeGall `14]

Verification:

- Fastest known deterministic algorithm is as above.
- Randomized algorithm [Freivalds `79] $O(n^2)$ time

CS §1.3 (MU) Verifying Matrix Multiplication

Task: Given three $n \times n$ matrices A, B, C, verify if $A \cdot B = C$.

Idea: Pick a random vector \overline{r} and check if $A \cdot B \cdot \overline{r} = C \cdot \overline{r}$.

Algorithm Basic Frievalds (input: $n \times n$ matrices A, B, C)

- 1. Choose a random *n*-bit vector \bar{r} by making each bit r_i independently 0 or 1 with probability 1/2 each.
- 2. Accept if $A \cdot (B \cdot \overline{r}) = C \cdot \overline{r}$; o. w. reject.

 $O(n^2)$ multiplications for each matrix-vector product

Running time: Three matrix-vector multiplications: $O(n^2)$ time.

Correctness: If $A \cdot B = C$, the algorithm always accepts.

Theorem

If $A \cdot B \neq C$, Basic-Frievalds accepts with probability $\leq 1/2$.

Probability Amplification: With k repetitions, error probability $\leq 2^{-k}$

CS 537 Analysis of Error Probability

Theorem

If $A \cdot B \neq C$, Basic-Frievalds accepts with probability $\leq 1/2$.

Proof: Suppose $A \cdot B \neq C$ and let D = AB - C*D* has a nonzero entry.

How can we have $A \cdot (B \cdot \bar{r}) = C \cdot \bar{r}$? This would mean that $D \cdot \bar{r} = 0$.

CS 537 Principle of Deferred Decisions

Idea: It does not matter in which order r_k are chosen!

- First choose $r_1, \ldots, r_6, r_8, \ldots, r_n$. Then r_7
- Before r_7 is chosen, the RHS of our equation is determined: $r_7 = -\frac{d_{3,1} \cdot r_1 + \dots + d_{3,6} \cdot r_6 + d_{3,8} \cdot r_8 + \dots + d_{3,n} \cdot r_n}{d_{3,7}}$
- Now, there is at most one choice of r_7 that will satisfy it.
- Since there are two choices for r_7 , the equation holds w.p. $\leq \frac{1}{2}$

For any two events A and $E_{,}$

$$Pr(A) = Pr(A \cap E) + Pr(A \cap \overline{E})$$

= $Pr(A|E) \cdot Pr(E) + Pr(A|\overline{E}) \cdot Pr(\overline{E})$

Let A be an event and let E_1, \ldots, E_n be mutually disjoint events whose union is Ω .

$$\Pr(A) = \sum_{i \in [n]} \Pr(A \cap E_i) = \sum_{i \in [n]} \Pr(A \mid E_i) \cdot \Pr(E_i).$$

9/8/2022

Analysis of Basic Freivalds: Formal Justification

Break Ω into smaller events $E_{x_1,\dots,x_6,x_8,\dots,x_n}$ corresponding to $(r_1,\dots,r_6,r_8,\dots,r_n)$ being assigned $x_1,\dots,x_6,x_8,\dots,x_n \in \{0,1\}$.

CS 537 Bayesian Approach to Amplification

How does our confidence increase with the number of trials?

- C = event that identity is correct
- A = event that test accepts

Our analysis of Basic Frievalds:

- $\Pr[A|\bar{C}] \le 1/2$
- 1-sided error: Pr[A|C]=1

Assumption (initial belief or ``prior''): Pr[C] = 1/2

By Bayes' Law

$$\Pr[C|A] = \frac{\Pr[A|C] \cdot \Pr[C]}{\Pr[A|C] \cdot \Pr[C] + \Pr[A|\overline{C}] \cdot \Pr[\overline{C}]}$$
$$\geq \frac{1 \cdot \frac{1}{2}}{1 \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}} = \frac{2}{3}$$

CS Bayesian Approach to Amplification

How does our confidence increase with the number of trials?

- C = event that identity is correct
- A = event that test accepts

Our analysis of Basic Frievalds:

- $\Pr[A|\bar{C}] \le 1/2$
- 1-sided error: Pr[A|C]=1

Assumption (initial belief or ``prior''): Pr[C] = 2/3

By Bayes' Law $\Pr[C|A] = \frac{1}{\Pr[A|C]}$

$$\Pr[C|A] = \frac{\Pr[A|C] \cdot \Pr[C]}{\Pr[A|C] \cdot \Pr[C] + \Pr[A|\overline{C}] \cdot \Pr[\overline{C}]}$$
$$\geq \frac{1 \cdot \frac{2}{3}}{1 \cdot \frac{2}{3} + \frac{1}{2} \cdot \frac{1}{3}} = \frac{4}{5}$$

CS Bayesian Approach to Amplification

How does our confidence increase with the number of trials?

- C = event that identity is correct
- A = event that test accepts

Our analysis of Basic Frievalds:

- $\Pr[A|\bar{C}] \le 1/2$
- 1-sided error: Pr[A|C]=1

Assumption (initial belief or ``prior''): $\Pr[C] = \frac{2^i}{(2^i + 1)}$

By Bayes' Law

$$\Pr[C|A] = \frac{\Pr[A|C] \cdot \Pr[C]}{\Pr[A|C] \cdot \Pr[C] + \Pr[A|\overline{C}] \cdot \Pr[\overline{C}]}$$
$$\geq \frac{1 \cdot \frac{2^{i}}{2^{i} + 1}}{1 \cdot \frac{2^{i}}{2^{i} + 1} + \frac{1}{2} \cdot \frac{1}{2^{i} + 1}} = \frac{2^{i+1}}{2^{i+1} + 1}$$