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Randomness in Computing
LECTURE 2
Last time
• Verifying polynomial identities
• Probability amplification
• Probability review
• Card magic trick
Discussions
• Conditional Probability
• Product Rule
• Law of Total Probability
• Bayes’ Law
Today
• More probability amplification
• Verifying matrix multiplication
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Review question
Card dealing
We deal two cards. What is the probability that the second 
card is an ace, given that the first is an ace? 
A. 3/52
B. 3/51
C. 4/52
D. 5/52
E. None of the answers above are correct.
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Review question

Toss a fair coin three times.
Let 𝐸𝐸𝑖𝑖 be the event that the 𝑖𝑖-th toss is HEADS. 
Let 𝐸𝐸 = 𝐸𝐸1 ∩ 𝐸𝐸2 ∩ 𝐸𝐸3.
What is the probability of E?
A. Pr(𝐸𝐸1) ⋅ Pr(𝐸𝐸2|𝐸𝐸1) ⋅ Pr(𝐸𝐸3|𝐸𝐸1 ∩ 𝐸𝐸2)
B. Pr(𝐸𝐸1) ⋅ Pr(𝐸𝐸2) ⋅ Pr(𝐸𝐸3)
C. Both A and B are correct.
D. Neither A nor B is correct.
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Probability Amplification
• Our algorithm for verifying polynomial identities accepts 

incorrectly with probability ≤ 𝑑𝑑
100𝑑𝑑

= 1
100

Idea: Repeat the algorithm and accept if all iterations accept.
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Pr error in all 𝑘𝑘 iterations

≤
1

100

𝑘𝑘



Sampling without replacement
• Let 𝐸𝐸𝑖𝑖 be the event that we choose a root in iteration 𝑖𝑖

• It is 0 if 𝑘𝑘 > 𝑑𝑑.
• If 𝑘𝑘 ≤ 𝑑𝑑, then
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Pr 𝐸𝐸𝑗𝑗 𝐸𝐸1 ∩ ⋯∩ 𝐸𝐸𝑗𝑗−1 =
𝑑𝑑 − (𝑗𝑗 − 1)

100𝑑𝑑 − (𝑗𝑗 − 1)

Pr error in all 𝑘𝑘 iterations
= Pr 𝐸𝐸1 ∩ ⋯∩ 𝐸𝐸𝑘𝑘

= Pr 𝐸𝐸1 ⋅ Pr 𝐸𝐸2 𝐸𝐸1 ⋅ … ⋅ Pr[𝐸𝐸𝑘𝑘|𝐸𝐸1 ∩ ⋯∩ 𝐸𝐸𝑘𝑘−1]

Pr error in all 𝑘𝑘 iterations ≤
1

100

𝑘𝑘



§1.3 (MU) Verifying Matrix Multiplication
Task: Given three 𝑛𝑛 × 𝑛𝑛 matrices 𝐴𝐴,𝐵𝐵,𝐶𝐶, verify if 𝐴𝐴 ⋅ 𝐵𝐵 = 𝐶𝐶.

Matrix multiplication algorithms:
• Naïve 𝑂𝑂(𝑛𝑛3) time
• Strassen 𝑂𝑂 𝑛𝑛log2 7 ≈ 𝑂𝑂(𝑛𝑛2.81) time
• World record 𝑂𝑂(𝑛𝑛2.373…) time                                                     

[Coppersmith-Winograd `87, Vassilevska Williams `13, LeGall `14]

Verification: 
• Fastest known deterministic algorithm is as above.
• Randomized algorithm [Freivalds `79] 𝑂𝑂(𝑛𝑛2) time
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Task: Given three 𝑛𝑛 × 𝑛𝑛 matrices 𝐴𝐴,𝐵𝐵,𝐶𝐶, verify if 𝐴𝐴 ⋅ 𝐵𝐵 = 𝐶𝐶.
Idea: Pick a random vector �𝒓𝒓 and check if 𝐴𝐴 ⋅ 𝐵𝐵 ⋅ �𝒓𝒓 = 𝐶𝐶 ⋅ �𝒓𝒓.

Running time: Three matrix-vector multiplications: O 𝑛𝑛2 time.
Correctness: If 𝐴𝐴 ⋅ 𝐵𝐵 = 𝐶𝐶, the algorithm always accepts.

Probability Amplification: With 𝑘𝑘 repetitions, error probability ≤ 2−𝑘𝑘
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O(𝒏𝒏𝟐𝟐) multiplications  for each matrix-vector product

§1.3 (MU) Verifying Matrix Multiplication

1. Choose a random 𝑛𝑛-bit vector �̅�𝑟 by making each bit 𝑟𝑟𝑖𝑖
independently 0 or 1 with probability 1/2 each. 

2. 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 if 𝐴𝐴 ⋅ (𝐵𝐵 ⋅ �𝒓𝒓) = 𝐶𝐶 ⋅ �𝒓𝒓; o. w. 𝐫𝐫𝐀𝐀𝐫𝐫𝐀𝐀𝐀𝐀𝐀𝐀.

(input: 𝑛𝑛 × 𝑛𝑛 matrices A, B, C)Algorithm Basic Frievalds

Theorem
If 𝐴𝐴 ⋅ 𝐵𝐵 ≠ 𝐶𝐶, Basic-Frievalds accepts with probability ≤ 1/2.



Analysis of Error Probability

Proof: Suppose 𝐴𝐴 ⋅ 𝐵𝐵 ≠ 𝐶𝐶 and let 𝐷𝐷 = 𝐴𝐴𝐵𝐵 − 𝐶𝐶
𝐷𝐷 has a nonzero entry.

How can we have 𝐴𝐴 ⋅ 𝐵𝐵 ⋅ �𝒓𝒓 = 𝐶𝐶 ⋅ �𝒓𝒓? 
This would mean that 𝐷𝐷 ⋅ �𝒓𝒓 = 𝟎𝟎.
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Theorem
If 𝐴𝐴 ⋅ 𝐵𝐵 ≠ 𝐶𝐶, Basic-Frievalds accepts with probability ≤ 1/2.

D



Principle of Deferred Decisions
Idea: It does not matter in which order 𝑟𝑟𝑘𝑘 are chosen!
• First choose 𝑟𝑟1, … , 𝑟𝑟6, 𝑟𝑟8, … , 𝑟𝑟𝑛𝑛. Then 𝑟𝑟7
• Before 𝑟𝑟7 is chosen, the RHS of our equation is determined:

𝑟𝑟7 = −
𝑑𝑑3,1 ⋅ 𝑟𝑟1 + ⋯+ 𝑑𝑑3,6 ⋅ 𝑟𝑟6 + 𝑑𝑑3,8 ⋅ 𝑟𝑟8 + ⋯+ 𝑑𝑑3,𝑛𝑛 ⋅ 𝑟𝑟𝑛𝑛

𝑑𝑑3,7

• Now, there is at most one choice of 𝑟𝑟7 that will satisfy it.

• Since there are two choices for 𝑟𝑟7, the equation holds w.p. ≤ 1
2
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Law of Total Probability
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For any two events 𝐴𝐴 and 𝐸𝐸,
Pr 𝐴𝐴 = Pr(𝐴𝐴 ∩ 𝐸𝐸) + Pr(𝐴𝐴 ∩ 𝐸𝐸)

= Pr(𝐴𝐴|𝐸𝐸) ⋅ Pr 𝐸𝐸 + Pr(𝐴𝐴|𝐸𝐸) ⋅ Pr 𝐸𝐸

Let A be an event and let 𝐸𝐸1, … ,𝐸𝐸𝑛𝑛 be mutually 
disjoint events whose union is Ω.

Pr(𝐴𝐴) = �
𝑖𝑖∈ 𝑛𝑛

Pr(𝐴𝐴 ∩ 𝐸𝐸𝑖𝑖) = �
𝑖𝑖∈ 𝑛𝑛

Pr(𝐴𝐴 ∣ 𝐸𝐸𝑖𝑖) ⋅ Pr(𝐸𝐸𝑖𝑖) .



Analysis of Basic Freivalds: Formal Justification

Break Ω into            smaller events 𝐸𝐸𝑥𝑥1,…,𝑥𝑥6,𝑥𝑥8,…,𝑥𝑥𝑛𝑛 corresponding to 
𝑟𝑟1, … , 𝑟𝑟6, 𝑟𝑟8, … , 𝑟𝑟𝑛𝑛 being assigned 𝑥𝑥1, … , 𝑥𝑥6, 𝑥𝑥8, … , 𝑥𝑥𝑛𝑛 ∈ {0,1}.

Pr 𝐴𝐴𝐵𝐵�𝒓𝒓 = 𝐶𝐶�𝒓𝒓 = �
𝑥𝑥∈ 0,1 𝑛𝑛−1

Pr 𝐴𝐴𝐵𝐵�𝒓𝒓 = 𝐶𝐶�𝒓𝒓 ∩ 𝐸𝐸𝑥𝑥

≤ �
𝑥𝑥∈ 0,1 𝑛𝑛−1

Pr 𝑟𝑟7 satisfies the equality ∩ 𝐸𝐸𝑥𝑥

= �
𝑥𝑥∈ 0,1 𝑛𝑛−1

Pr 𝑟𝑟7 satisfies the equality |𝐸𝐸𝑥𝑥 ⋅ Pr[𝐸𝐸𝑥𝑥]

≤ �
𝑥𝑥∈ 0,1 𝑛𝑛−1

1
2
⋅ Pr 𝐸𝐸𝑥𝑥 ≤

1
2

�
𝑥𝑥∈ 0,1 𝑛𝑛−1

Pr 𝐸𝐸𝑥𝑥 =
1
2
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by Law of Total 
Probability



How does our confidence increase with the number of trials?
• C = event that identity is correct
• A = event that test accepts
Our analysis of Basic Frievalds:
• Pr[A|�̅�𝐶]≤ 1/2
• 1-sided error: Pr[A|C]=1
Assumption (initial belief or ``prior’’): Pr 𝐶𝐶 = 1/2
By Bayes’ Law

Pr 𝐴𝐴 𝐶𝐶 ⋅ Pr 𝐶𝐶
Pr 𝐴𝐴 𝐶𝐶 ⋅ Pr 𝐶𝐶 + Pr 𝐴𝐴 �̅�𝐶 ⋅ Pr �̅�𝐶

≥
1 ⋅ 1

2
1 ⋅ 1

2 + 1
2 ⋅

1
2

=
2
3
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Bayesian Approach to Amplification

Pr 𝐶𝐶 𝐴𝐴 =



How does our confidence increase with the number of trials?
• C = event that identity is correct
• A = event that test accepts
Our analysis of Basic Frievalds:
• Pr[A|�̅�𝐶]≤ 1/2
• 1-sided error: Pr[A|C]=1
Assumption (initial belief or ``prior’’): Pr 𝐶𝐶 = 𝟐𝟐/𝟑𝟑
By Bayes’ Law

Pr 𝐶𝐶 𝐴𝐴 =
Pr 𝐴𝐴 𝐶𝐶 ⋅ Pr 𝐶𝐶

Pr 𝐴𝐴 𝐶𝐶 ⋅ Pr 𝐶𝐶 + Pr 𝐴𝐴 �̅�𝐶 ⋅ Pr �̅�𝐶

≥
1 ⋅ 𝟐𝟐𝟑𝟑

1 ⋅ 𝟐𝟐𝟑𝟑 + 1
2 ⋅

𝟏𝟏
𝟑𝟑

=
𝟒𝟒
𝟓𝟓
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Bayesian Approach to Amplification



How does our confidence increase with the number of trials?
• C = event that identity is correct
• A = event that test accepts
Our analysis of Basic Frievalds:
• Pr[A|�̅�𝐶]≤ 1/2
• 1-sided error: Pr[A|C]=1
Assumption (initial belief or ``prior’’): Pr 𝐶𝐶 = 𝟐𝟐𝒊𝒊/(𝟐𝟐𝒊𝒊 + 𝟏𝟏)
By Bayes’ Law

Pr 𝐶𝐶 𝐴𝐴 =
Pr 𝐴𝐴 𝐶𝐶 ⋅ Pr 𝐶𝐶

Pr 𝐴𝐴 𝐶𝐶 ⋅ Pr 𝐶𝐶 + Pr 𝐴𝐴 �̅�𝐶 ⋅ Pr �̅�𝐶

≥
1 ⋅ 𝟐𝟐𝒊𝒊

𝟐𝟐𝒊𝒊 + 𝟏𝟏

1 ⋅ 𝟐𝟐𝒊𝒊
𝟐𝟐𝒊𝒊 + 𝟏𝟏 + 1

2 ⋅
𝟏𝟏

𝟐𝟐𝒊𝒊 + 𝟏𝟏

=
𝟐𝟐𝒊𝒊+𝟏𝟏

𝟐𝟐𝒊𝒊+𝟏𝟏 + 𝟏𝟏
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Bayesian Approach to Amplification
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