Randomness in Computing

LECTURE 2

Last time
 Verifying polynomial identities

D\ 5 * Probability amplification
@3 » Probability review

 Card magic trick

53? Discussions
‘ ! * Conditional Probability

* Product Rule

e Law of Total Probability

* Bayes’ Law

Today

* More probability amplification
 Verifying matrix multiplication
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537| Review question

Card dealing

We deal two cards. What 1s the probability that the second
card 1s an ace, given that the first 1s an ace?

A. 3/52
3/51
4/52

. 5/52
None of the answers above are correct.
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537| Review question

Toss a fair coin three times.

Let E; be the event that the i-th toss 1s HEADS.
LetE = E;,NE,NE;.

What is the probability of E?

A. Pr(Ey) -Pr(E5|E;) - Pr(E3|Eq1 NE,)

B. Pr(E;) - Pr(E,) - Pr(E3)

C. Both A and B are correct.

D. Neither A nor B 1s correct.
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<o| Probability Amplification

* QOur algorithm for verifying polynomial identities accepts

| , e d 1
< o
incorrectly with probability < Tood _ 100

Idea: Repeat the algorithm and accept if all iterations accept.

Pr|error in all k iterations]

1 k
S S
(100)
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%?} Sampling without replacement

* Let E; be the event that we choose a root 1n iteration i
Pr|error in all k iterations]|
= Pr[E{ NN E}]
= Pr|E;]| - Pr[E5|E{] - ... Pr[Ex|E{ NN E}_4]

« ItisO1ifk > d.

+ Ifk<d, then Pr[E]|E, N-NE_]= ¢—0—1)

100d — (j — 1)

k
1
P in all k iterati <
rlerror in all k iterations] (1()0)
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5%% §1.3 (MU) Verifying Matrix Multiplication

Task: Given three n X n matrices 4, B, C, verify1if A - B = C.

Matrix multiplication algorithms:

* Naive 0(n?) time
o Strassen 0(n!°827) ~ 0(n?8) time
World record 0(n%373+) time

[Coppersmith-Winograd 87, Vassilevska Williams "13, LeGall "14]

Verification:
» Fastest known deterministic algorithm 1s as above.
 Randomized algorithm [Freivalds *79] 0(n?) time
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@S §1.3 (MU) Verifying Matrix Multiplication

Task: Given three n X n matrices 4, B, C, verifyif A - B = C.

Idea: Pick a random vector r and checkifA-B -r=C - 7.

“ Algorithm Basic Frievalds (input: n X n matrices A, B, C)\

1. Choose a random n-bit vector 7 by making each bit 7;
independently O or 1 with probability 1/2 each.
\2. AcceptitA-(B-1r)=C"7;0 w.reject. 4

O(n?) multiplications for each matrix-vector product

Running time: Three matrix-vector multiplications: O(nz) time.

Correctness: If A - B = C, the algorithm always accepts.
( Theorem
Llf A - B # C, Basic-Frievalds accepts with probability < 1/2.

Probability Amplification: With k repetitions, error probability < 27
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%%S} Analysis of Error Probability

(Theorem
UfA - B # C, Basic-Frievalds accepts with probability < 1/2.

Proof: Suppose A-B # CandletD = AB —C
D

D has a nonzero entry.

How can we have A - (B -7) = C - 1?
This would mean that D - r = 0.
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537 Principle of Deferred Decisions

Idea: It does not matter in which order ry, are chosen!
* First choose 14, ..., 7,73, ..., 1;,. Then 1y

* Before 77 1s chosen, the RHS of our equation 1s determined:
d3’1 11 + .-+ d3,6 *Te + d3,8 *Tg + .-+ d3,7’l *Th

d3,7

* Now, there 1s at most one choice of 7, that will satisfy it.

T'7=

. : : 1
 Since there are two choices for 1, the equation holds w.p. < E
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%%‘% Law of Total Probability

For any two events A and E,

Pr(A) = Pr(ANE) +Pr(ANE)
= Pr(A|E) - Pr(E) + Pr(A|E) - Pr(E) |

~

4 Let A be an event and let Ey, ..., E,; be mutually )
disjoint events whose union 1s ().

Pr(4) = z Pr(A N E;) = z Pr(4 | E;) - Pr(E;).
\ ie[n] i€[n]
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é%ﬁi’ Analysis of Basic Freivalds: Formal Justification

Break () into smaller events Ey . . x, corresponding to
(ry, ..., 7g, Ty, ..., Iyy) being assigned x4, ..., Xg, Xg, ..., X, € {0,1}.

PriABF = CFl= Y Prl(ABF=CP)NE] | ooty
xe€{0,1}n1 '
< z Pr|(r; satisfies the equality) N E, |
x€{0,1}-1
= z Pr[(r; satisfies the equality)|E,] - Pr[E,]
x€{0,1}n-1
1 1 1
< z > PrlEx] <5 z PriE,] = -
x€{0,1}"~1 x€{0,1}n~1
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%%g Bayesian Approach to Amplification

How does our confidence increase with the number of trials?
« (C = event that 1dentity 1s correct

« A = event that test accepts

Our analysis of Basic Frievalds:

- Pr[A|IC]<1/2

* l-sided error: Pr[A|C]=1

Assumption (initial belief or ““prior’’): Pr|[C] = 1/2

By Bayes’ L
yoayes A Pr[A|C] - Pr[C]
Pricial =" 5rlaicT - pric) + Pr|A|C] - Pr|C]
1
> —
1T 13
27722
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w;.\;’Y;,‘?;lBayesian Approach to Amplification

How does our confidence increase with the number of trials?
« (C = event that 1dentity 1s correct

« A = event that test accepts

Our analysis of Basic Frievalds:

- Pr[A|IC]<1/2

* l-sided error: Pr[A|C]=1

Assumption (initial belief or ““prior’’): Pr[C] = 2/3

By Bayes’ L
yayes man Pr[A|C] - Pr[C]
Pr[C|A] = — —
Pr[A4|C] - Pr[C] + Pr|4|C] - Pr|C]
2
= = —
_1.Z+1.1 5
3723
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g;lBayesian Approach to Amplification

How does our confidence increase with the number of trials?
« (C = event that 1dentity 1s correct

« A = event that test accepts

Our analysis of Basic Frievalds:

- Pr[A|IC]<1/2

* l-sided error: Pr[A|C]=1

Assumption (initial belief or “*prior’’): Pr[C] = 2' /(2" + 1)

By Bayes’ Law
yoe Pr[A|C] - Pr[C]
Pr[C|A] = — —
Pr[A4|C] - Pr[C] + Pr|4|C] - Pr|C]
Zi
— i T 9i+1
;.28 1 1 2it1 4 1

204172 2041
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