Randomness in Computing

Lecture 2

Last time
- Verifying polynomial identities
- Probability amplification
- Probability review
- Card magic trick

Discussions
- Conditional Probability
- Product Rule
- Law of Total Probability
- Bayes’ Law

Today
- More probability amplification
- Verifying matrix multiplication

9/8/2022

Sofya Raskhodnikova; Randomness in Computing
Review question

Card dealing

We deal two cards. What is the probability that the second card is an ace, given that the first is an ace?

A. 3/52
B. 3/51
C. 4/52
D. 5/52
E. None of the answers above are correct.
Toss a fair coin three times.
Let E_i be the event that the i-th toss is HEADS.
Let $E = E_1 \cap E_2 \cap E_3$.

What is the probability of E?

A. $\Pr(E_1) \cdot \Pr(E_2|E_1) \cdot \Pr(E_3|E_1 \cap E_2)$
B. $\Pr(E_1) \cdot \Pr(E_2) \cdot \Pr(E_3)$
C. Both A and B are correct.
D. Neither A nor B is correct.
Our algorithm for verifying polynomial identities accepts incorrectly with probability $\leq \frac{d}{100d} = \frac{1}{100}$.

Idea: Repeat the algorithm and accept if all iterations accept.

$$\Pr[\text{error in all } k \text{ iterations}] \leq \left(\frac{1}{100} \right)^k$$
Sampling without replacement

- Let E_i be the event that we choose a root in iteration i

 \[
 \Pr[\text{error in all } k \text{ iterations}] = \Pr[E_1 \cap \cdots \cap E_k] = \Pr[E_1] \cdot \Pr[E_2 | E_1] \cdot \cdots \cdot \Pr[E_k | E_1 \cap \cdots \cap E_{k-1}]
 \]

- If $k > d$, then $\Pr[E_j | E_1 \cap \cdots \cap E_{j-1}] = \frac{d - (j - 1)}{100d - (j - 1)}$

- It is 0 if $k > d$.

- If $k \leq d$, then $\Pr[E_j | E_1 \cap \cdots \cap E_{j-1}] = \frac{1}{100}$

\[
\Pr[\text{error in all } k \text{ iterations}] \leq \left(\frac{1}{100}\right)^k
\]
§1.3 (MU) Verifying Matrix Multiplication

Task: Given three $n \times n$ matrices A, B, C, verify if $A \cdot B = C$.

Matrix multiplication algorithms:
- Naïve $O(n^3)$ time
- Strassen $O(n^\log_2 7) \approx O(n^{2.81})$ time
- World record $O(n^{2.373\ldots})$ time

 [Coppersmith-Winograd ’87, Vassilevska Williams ’13, LeGall ’14]

Verification:
- Fastest known deterministic algorithm is as above.
- Randomized algorithm [Freivalds ‘79] $O(n^2)$ time
Task: Given three $n \times n$ matrices A, B, C, verify if $A \cdot B = C$.

Idea: Pick a random vector \bar{r} and check if $A \cdot B \cdot \bar{r} = C \cdot \bar{r}$.

Algorithm Basic Frievalds (input: $n \times n$ matrices A, B, C)

1. Choose a random n-bit vector \bar{r} by making each bit r_i independently 0 or 1 with probability 1/2 each.
2. Accept if $A \cdot (B \cdot \bar{r}) = C \cdot \bar{r}$; o.w. reject.

Running time: Three matrix-vector multiplications: $O(n^2)$ time.

Correctness: If $A \cdot B = C$, the algorithm always accepts.

Theorem

If $A \cdot B \neq C$, Basic-Frievalds accepts with probability $\leq 1/2$.

Probability Amplification: With k repetitions, error probability $\leq 2^{-k}$
Analysis of Error Probability

Theorem
If $A \cdot B \neq C$, Basic-Frievalds accepts with probability $\leq 1/2$.

Proof: Suppose $A \cdot B \neq C$ and let $D = AB - C$

D has a nonzero entry.

How can we have $A \cdot (B \cdot \vec{r}) = C \cdot \vec{r}$?

This would mean that $D \cdot \vec{r} = 0$.

9/8/2022

Sofya Raskhodnikova; Randomness in Computing
Idea: It does not matter in which order r_k are chosen!

- First choose $r_1, \ldots, r_6, r_8, \ldots, r_n$. Then r_7
- Before r_7 is chosen, the RHS of our equation is determined:
 \[r_7 = -\frac{d_{3,1} \cdot r_1 + \cdots + d_{3,6} \cdot r_6 + d_{3,8} \cdot r_8 + \cdots + d_{3,n} \cdot r_n}{d_{3,7}} \]
- Now, there is at most one choice of r_7 that will satisfy it.
- Since there are two choices for r_7, the equation holds w.p. $\leq \frac{1}{2}$
Law of Total Probability

For any two events A and E,

$$
\Pr(A) = \Pr(A \cap E) + \Pr(A \cap \overline{E}) = \Pr(A|E) \cdot \Pr(E) + \Pr(A|\overline{E}) \cdot \Pr(\overline{E})
$$

Let A be an event and let E_1, \ldots, E_n be mutually disjoint events whose union is Ω.

$$
\Pr(A) = \sum_{i \in [n]} \Pr(A \cap E_i) = \sum_{i \in [n]} \Pr(A | E_i) \cdot \Pr(E_i).
$$
Break Ω into smaller events $E_{x_1, \ldots, x_6, x_8, \ldots, x_n}$ corresponding to $(r_1, \ldots, r_6, r_8, \ldots, r_n)$ being assigned $x_1, \ldots, x_6, x_8, \ldots, x_n \in \{0,1\}$.

\[
\Pr[AB\overline{r} = C\overline{r}] = \sum_{x \in \{0,1\}^{n-1}} \Pr[(AB\overline{r} = C\overline{r}) \cap E_x] \quad \text{by Law of Total Probability}
\]

\[
\leq \sum_{x \in \{0,1\}^{n-1}} \Pr[(r_7 \text{ satisfies the equality}) \cap E_x]
\]

\[
= \sum_{x \in \{0,1\}^{n-1}} \Pr[(r_7 \text{ satisfies the equality})|E_x] \cdot \Pr[E_x]
\]

\[
\leq \sum_{x \in \{0,1\}^{n-1}} \frac{1}{2} \cdot \Pr[E_x] \leq \frac{1}{2} \sum_{x \in \{0,1\}^{n-1}} \Pr[E_x] = \frac{1}{2}
\]
How does our confidence increase with the number of trials?

- C = event that identity is correct
- A = event that test accepts

Our analysis of Basic Frievalds:
- $\Pr[A|\overline{C}] \leq 1/2$
- 1-sided error: $\Pr[A|C]=1$

Assumption (initial belief or ``prior''): $\Pr[C] = 1/2$

By Bayes’ Law

$$\Pr[C|A] = \frac{\Pr[A|C] \cdot \Pr[C]}{\Pr[A|C] \cdot \Pr[C] + \Pr[A|\overline{C}] \cdot \Pr[\overline{C}]}$$

$$\geq \frac{1 \cdot \frac{1}{2}}{1 \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}} = \frac{2}{3}$$
How does our confidence increase with the number of trials?

- C = event that identity is correct
- A = event that test accepts

Our analysis of Basic Frievalds:

- \(\Pr[A|\bar{C}] \leq 1/2 \)
- 1-sided error: \(\Pr[A|C] = 1 \)

Assumption (initial belief or ``prior''): \(\Pr[C] = 2/3 \)

By Bayes’ Law

\[
\Pr[C|A] = \frac{\Pr[A|C] \cdot \Pr[C]}{\Pr[A|C] \cdot \Pr[C] + \Pr[A|\bar{C}] \cdot \Pr[\bar{C}]}
\]

\[
\geq \frac{1 \cdot \frac{2}{3}}{1 \cdot \frac{2}{3} + \frac{1}{2} \cdot \frac{1}{3}} = \frac{4}{5}
\]
How does our confidence increase with the number of trials?

- C = event that identity is correct
- A = event that test accepts

Our analysis of Basic Frievalds:

- \(\Pr[A|\overline{C}] \leq \frac{1}{2} \)
- 1-sided error: \(\Pr[A|C]=1 \)

Assumption (initial belief or "prior"): \(\Pr[C] = \frac{2^i}{2^i + 1} \)

By Bayes’ Law

\[
\Pr[C|A] = \frac{\Pr[A|C] \cdot \Pr[C]}{\Pr[A|C] \cdot \Pr[C] + \Pr[A|\overline{C}] \cdot \Pr[\overline{C}]}
\]

\[
\geq \frac{1 \cdot \frac{2^i}{2^i + 1}}{1 \cdot \frac{2^i}{2^i + 1} + \frac{1}{2} \cdot \frac{1}{2^i + 1}} = \frac{2^{i+1}}{2^{i+1} + 1}
\]