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Randomness in Computing

LECTURE 4 
Last time
• Randomized min-cut algorithm

Today
• Random variables

• Expectation

• Linearity of expectation

• Jensen’s inequality
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Measurements in random experiments

• Example 1: coin flips

–  Measurement X: number of heads.

–  E.g., if the outcome is HHTH, then X=3.

• Example 2: permutations

– 𝑛 students exchange their hats, so that 

everybody gets a random hat

– Measurement X: number of students that got their own hats.

– E.g., if students 1,2,3 got hats 2,1,3 then X=1.
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Recall: random variables

• A random variable X on a sample space Ω is a 

function 𝑋: Ω → ℝ that assigns to each sample 

point 𝜔 ∈ Ω a real number 𝑋 𝜔 .

• For each random variable, we should understand:

– The set of values it can take.

– The probabilities with which it takes on these values.

• The distribution of a discrete random variable X 

is the collection of pairs 𝑎, Pr 𝑋 = 𝑎 .
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Question

You roll two dice. Let X be the random variable that represents the 

sum of the numbers you roll.

What is the probability of the event X=6?

A.  1/36

B.  1/9

C.  5/36

D. 1/6

E. None of the above.
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Question

You roll two dice. Let X be the random variable that represents the 

sum of the numbers you roll.

How many different values can X take on?

A.  6

B. 11

C. 12

D. 36

E. None of the above.
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Question

You roll two dice. Let X be the random variable that represents the 

sum of the numbers you roll.

What is the distribution of X?

A. Uniform distribution on the set of possible values.

B. It satisfies Pr 𝑋 = 2 < Pr 𝑋 = 3 < ⋯ < Pr 𝑋 = 12 .

C. It satisfies Pr 𝑋 = 2 > Pr 𝑋 = 3 > ⋯ > Pr 𝑋 = 12 .

D. It satisfies Pr 𝑋 = 2 < Pr 𝑋 = 3 < ⋯ < Pr 𝑋 = 7  and 

Pr 𝑋 = 7 > Pr 𝑋 = 8 > ⋯ > Pr 𝑋 = 12 .

E. None of the above is true.
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Independent RVs: definition

• Random variables 𝑋 and 𝑌 are independent if
Pr 𝑋 = 𝑥 ∩ 𝑌 = 𝑦

 = Pr 𝑋 = 𝑥 ⋅ Pr 𝑌 = 𝑦

 for all values 𝑥 and 𝑦. 

• Random variables 𝑋1, 𝑋2, … , 𝑋𝑛 are mutually independent

     if for all subsets of 𝐼 ⊆ [𝑛] and all values 𝑥𝑖, where 𝑖 ∈ 𝐼,

Pr[∩𝑖∈𝐼 𝑋𝑖 = 𝑥𝑖  ]

 = ෑ

𝑖∈𝐼

Pr 𝑋𝑖 = 𝑥𝑖 .
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Question

You roll one die. Let X be the random variable that represents the 

result.

What value does X take, on average?

A.  1/6

B.  3

C.  3.5

D.  6

E. None of the above.
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Random variables: expectation

• The expectation of a discrete random variable X over a 

sample space Ω is 

𝔼 𝑋 = ෍

𝜔∈Ω

𝑋 𝜔 ⋅ Pr 𝜔 .

•  We can group together outcomes 𝜔 for which 𝑋 𝜔 = 𝑎:

𝔼 𝑋 = ෍

𝑎

𝑎 ⋅ Pr 𝑋 = 𝑎 ,

    where the sum is over all possible values 𝑎 taken by X.

• The second equality is more useful for calculations.
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Example: random hats

• Example: permutations

– 𝑛 students take off their hats, then everybody gets a random hat

– R.V. X: the number of students that got their own hats.

– E.g., if students 1,2,3 got hats 2,1,3 then X=1.

• Distribution of X:

Pr 𝑋 = 0 = 1/3, Pr 𝑋 = 1 = 1/2, Pr 𝑋 = 3 = 1/6.

• What’s the expectation of X?
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Linearity of expectation

• Theorem. For any two random variables X and Y on the 

same probability space,

𝔼 𝑋 + 𝑌 = 𝔼 𝑋 + 𝔼 𝑌 .

   Also, for all 𝑐 ∈ ℝ,

𝔼 𝑐𝑋 = 𝑐 ⋅ 𝔼 𝑋 .
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Indicator random variables

• An indicator random variable takes on two 

values: 0 and 1.

• Lemma. For an indicator random variable X,

𝔼 𝑋 = Pr 𝑋 = 1 .
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Question

You have a coin with bias 3/4 (the bias is the probability of HEADS). 

Let X be the number of HEADS in 1000 tosses of your coin.

You represent X as the sum: X = 𝑋1 + 𝑋2 + ⋯ + 𝑋1000.

What is 𝑋1?

A. 3/4.

B. The number of HEADS. 

C. The probability of HEADS in toss 1. 

D. The number of heads in toss 1.

E. None of the above.
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Question

You have a coin with bias 3/4 (the bias is the probability of HEADS). 

Let X be the number of HEADS in 1000 tosses of your coin.

What is the expectation of X?

A. 3/4.

B. 4/3. 

C. 500. 

D. 750.

E. None of the above.
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Example: random hats

• Example: permutations

– 𝑛 students take off their hats, then everybody gets a random hat

– R.V. X: the number of students that got their own hats.

• What’s the expectation of X for general 𝑛?
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Jensen’s inequality: example

• Exercise: Let 𝑋 be the length of a side of a square chosen from 

[99] uniformly at random. What is the expected value of the area?

    Solution: Find 𝔼 𝑋2 .

 𝔼 𝑋2 = ෍

𝑖=1

99

𝑖2 ⋅
1

99

• Comparison. 𝔼 𝑋 2 =

• In general, 𝔼 𝑋2 ≥ 𝔼 𝑋 2
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Jensen’s inequality

In general, 𝔼 𝑋2 ≥ 𝔼 𝑋 2

Proof: Let 𝜇 = 𝔼[𝑋]. Consider 𝑌 = 𝑋 − 𝜇 2.

     0 ≤ 𝔼 𝑌

        =  𝔼 𝑋2 − 2𝑋𝜇 + 𝜇2  

        =  𝔼 𝑋2 − 2𝜇 𝔼 𝑋 + 𝜇2

        =  𝔼 𝑋2 − 2𝜇2 + 𝜇2

        =  𝔼 𝑋2 − 𝜇2

We get: 𝔼 𝑋2 ≥ 𝜇2
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=  𝔼 𝑋 − 𝜇 2



Jensen’s inequality

A function 𝑓: ℝ → ℝ is convex if, for all 𝑎, 𝑏 ∈ ℝ and all 𝜆 ∈ 0,1 ,
𝑓 𝜆𝑎 + 1 − 𝜆 𝑏 ≤ 𝜆𝑓 𝑎 + 1 − 𝜆 𝑓 𝑏 .

• Jensen’s inequality. If 𝑓 is a convex function and X is a random 

variable, then 

𝑓 𝔼 𝑋 ≤ 𝔼 𝑓 𝑋 .
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Average with secret inputs

Can 𝑛 students in the class find out their average score on the exam 

without sharing their scores? (Scores are in 𝑡 ).

Solution: Let 𝑚 be an integer larger than 𝑛𝑡.

Let 𝑠𝑖 be the score of student 𝑖, for all 𝑖 ∈ 𝑛 .

• Each student 𝑖 picks 𝑋𝑖[𝑗] uniformly at random from 0 to 𝑚 − 1 

for 𝑗 ∈ [𝑛 − 1] and sets 𝑋𝑖[𝑛] so that

𝑠𝑖 = ෍

𝑗∈[𝑛]

𝑋𝑖[𝑗]  mod 𝑚

• Each student 𝑗 ∈ [𝑛] gets ``shares’’ 𝑋𝑖[𝑗] for all 𝑖 ∈ 𝑛 , adds 

them up mod 𝑚 and shows them to everybody.

• All 𝑛 sums are added together mod 𝑚 to obtain the sum of the 

scores, which is divided by 𝑛 to obtain the average.
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