Lecture 5

Last time
- Randomized min-cut algorithm
- Random variables

Today
- Random variables, expectation
- Bernoulli and binomial RVs
Measurements in random experiments

• **Example 1: coin flips**
 – Measurement X: number of heads.
 – E.g., if the outcome is HHTH, then $X=3$.

• **Example 2: permutations**
 – n students exchange their hats, so that everybody gets a random hat
 – Measurement X: number of students that got their own hats.
 – E.g., if students 1,2,3 got hats 2,1,3 then $X=1$.
Random variables: definition

• A random variable X on a sample space Ω is a function $X: \Omega \to \mathbb{R}$ that assigns to each sample point $\omega \in \Omega$ a real number $X(\omega)$.

• For each random variable, we should understand:
 – The set of values it can take.
 – The probabilities with which it takes on these values.

• The distribution of a discrete random variable X is the collection of pairs $\{(a, \Pr[X = a])\}$.
You roll two dice. Let X be the random variable that represents the sum of the numbers you roll.

What is the probability of the event $X=6$?

A. $1/36$
B. $1/9$
C. $5/36$
D. $1/6$
E. None of the above.
You roll two dice. Let X be the random variable that represents the sum of the numbers you roll.

How many different values can X take on?

A. 6
B. 11
C. 12
D. 36
E. None of the above.
You roll two dice. Let X be the random variable that represents the sum of the numbers you roll.

What is the distribution of X?

A. Uniform distribution on the set of possible values.

B. It satisfies $\Pr[X = 2] < \Pr[X = 3] < \cdots < \Pr[X = 12]$.

C. It satisfies $\Pr[X = 2] > \Pr[X = 3] > \cdots > \Pr[X = 12]$.

D. It satisfies $\Pr[X = 2] < \Pr[X = 3] < \cdots < \Pr[X = 7]$ and $\Pr[X = 7] > \Pr[X = 8] > \cdots > \Pr[X = 12]$.

E. None of the above is true.
Independent RVs: definition

- Random variables X and Y are **independent** if
 \[
 \Pr[(X = x) \cap (Y = y)] = \Pr[X = x] \cdot \Pr[Y = y]
 \]
 for all values x and y.

- Random variables X_1, X_2, \ldots, X_n are **mutually independent**
 if for all subsets of $I \subseteq [n]$ and all values x_i, where $i \in I$,
 \[
 \Pr[\cap_{i \in I} (X_i = x_i)] = \prod_{i \in I} \Pr[X_i = x_i].
 \]
You roll two dice. Let X_1 be the value on the first die, X_2 be the value on the second die, and $X = X_1 + X_2$.

Which statements below are true?

A. X_1 and X_2 are independent.
B. X_1 and X are independent.
C. X_2 and X are independent.
D. X_1, X_2 and X are mutually independent.
You roll one die. Let X be the random variable that represents the result.

What value does X take, on average?

A. $\frac{1}{6}$
B. 3
C. 3.5
D. 6
E. None of the above.
The expectation of a discrete random variable X over a sample space Ω is

$$E[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \Pr[\omega].$$

We can group together outcomes ω for which $X(\omega) = i$:

$$E[X] = \sum_i i \cdot \Pr[X = i],$$

where the sum is over all possible values i taken by X.

The second equality is more useful for calculations.
Example from last lecture: random hats

- **Example:** permutations
 - n students exchange their hats, so that everybody gets a random hat
 - R.V. X: the number of students that got their own hats.
 - E.g., if students 1,2,3 got hats 2,1,3 then $X=1$.

- **Distribution of X:**
 \[
 \Pr[X = 0] = \frac{1}{3}, \quad \Pr[X = 1] = \frac{1}{2}, \quad \Pr[X = 3] = \frac{1}{6}.
 \]

- **What’s the expectation of X?**
Example: roulette

- 38 slots: 18 black, 18 red, 2 green.

- If we bet $1 on red, we get $2 back if red comes up. What’s the expected value of our winnings?
Linearity of expectation

- **Theorem.** For any two random variables X and Y on the same probability space,
 \[E[X + Y] = E[X] + E[Y]. \]

 Also, for all $c \in \mathbb{R}$,
 \[E[cX] = c \cdot E[X]. \]
A basket holds 100 chips labeled with integers 1 to 100. Two chips are drawn from the basket at random without replacement.

What is the expected value of their sum?
Indicator random variables

- An indicator random variable takes on two values: 0 and 1.
- Lemma. For an indicator random variable X,
 $$E[X] = \Pr[X = 1].$$
You have a coin with bias $3/4$ (the bias is the probability of HEADS). Let X be the number of HEADS in 1000 tosses of your coin. You represent X as the sum: $X = X_1 + X_2 + \cdots + X_{1000}$.

What is X_1?

B. The number of HEADS.
C. The probability of HEADS in toss 1.
D. The number of heads in toss 1.
E. None of the above.
You have a coin with bias 3/4 (the bias is the probability of HEADS). Let X be the number of HEADS in 1000 tosses of your coin.

What is the expectation of X?

B. 4/3.
C. 500.
D. 750.
E. None of the above.
A binomial random variable with parameters \(n \) and \(p \), denoted \(\text{Bin}(n, p) \), is the number of HEADS in \(n \) tosses of a coin with bias \(p \).

Lemma. The probability distribution of \(X = \text{Bin}(n, p) \) is

\[
\Pr[X = j] = \binom{n}{j} p^j (1 - p)^{n-j}
\]

for all \(j = 0, 1, \ldots, n \).

Lemma. The expectation of \(X = \text{Bin}(n, p) \) is

\[
E[X] = np.
\]
Throw m balls into n bins.
Let X be the number of balls that land into bin 1.
(Recall that $\text{Bin}(n, p)$ is the binomial distribution, i.e., the distribution of the number of HEADS in n tosses of a coin with bias p.)

Then the distribution of X is
A. $\text{Bin} (n, m)$
B. $\text{Bin} (m, 1/n)$
C. $\text{Bin} \left(m, \frac{n-1}{n} \right)$
D. a binomial distribution, but none of the above.
E. not a binomial distribution.
Throw m balls into n bins. Let Y be the number of empty bins.

Compute $E[Y]$.

A. 1
B. $n/2$
C. $\left(1 - \frac{1}{n}\right)^m$
D. $n \left(1 - \frac{1}{n}\right)^m$
E. None of the above.
Theorem. For any two independent random variables X and Y on the same probability space,
\[E[X \cdot Y] = E[X] \cdot E[Y]. \]

Note. The equality does not hold, in general, for dependent random variables.

Example. We toss two coins.
Let $X =$ number of HEADS, $Y =$ number of TAILS.
Calculate $E[X]$, $E[Y]$ and $E[XY]$.
Jensen’s inequality

• A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if, for all x, y and all $\lambda \in [0,1]$,
 $$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y).$$

• **Jensen’s inequality.** If f is a convex function and X is a random variable, then
 $$E[f(X)] \geq f(E[X]).$$