

Randomness in Computing

LECTURE 8 Last time

- Markov's inequality
- Variance, covariance
- Variance of binomial and geometric RVs

Today

- Chebyshev's inequality
- Finding the median of an array

• The variance of a random variable X with expectation $\mathbb{E}[X] = \mu$ is

$$\operatorname{Var}[X] = \mathbb{E}[(X - \mu)^2].$$

• Equivalently, $Var[X] = \mathbb{E}[X^2] - \mu^2$.

CS 537 Variance: additional facts

- Theorem. For $a, b \in \mathbb{R}$ and a random variable X, $Var[aX + b] = a^2 Var[X].$
- Theorem. If $X_1, ..., X_n$ are pairwise independent random variables, then

 $\operatorname{Var}[X_1 + \dots + X_n] = \operatorname{Var}[X_1] + \dots + \operatorname{Var}[X_n].$

CS 537 Chebyshev's Inequality

Theorem (Chebyshev's Inequality)

Let X be a random variable. For all a > 0, $\Pr(|X - \mathbb{E}[X]| \ge a) \le \frac{\operatorname{Var}(X)}{a^2}$.

Pafnuty Chebyshev [1821-1894]

$$\leq \frac{\mathbb{E}[Y]}{a^2} \quad \text{(by Markov)} \quad Y \geq 0$$
$$= \frac{\mathbb{E}[(X - \mathbb{E}[X])^2]}{a^2}$$
$$= \frac{\text{Var}[X]}{a^2}$$

image source https://www.britannica.com/biography/Pafnuty-Lvovich-Chebyshev

Sofya Raskhodnikova, Wayne Snyder; Probability in Computing

CS 537 Chebyshev's Inequality: Corollary

Theorem (Chebyshev's Inequality) Let X be a random variable. For all a > 0, $Pr(|X - \mathbb{E}[X]| \ge a) \le \frac{Var(X)}{a^2}$. Alternative form: for all t > 1, $Pr[|X - \mathbb{E}[X]| \ge t \cdot \sigma[X]] \le \frac{1}{t^2}$.

Pafnuty Chebyshev [1821-1894]

image source https://www.britannica.com/biography/Pafnuty-Lvovich-Chebyshev

CS 537 Chebyshev's Inequality: Example 1

 $X \sim \operatorname{Bin}(n, 1/2)$. Bound $\Pr\left[X \ge \frac{3n}{4}\right]$ using Markov and Chebyshev. Solution: $\mathbb{E}[X] = ; \operatorname{Var}[X] =$ Markov: $\Pr\left[X \ge \frac{3n}{4}\right] \le$

Chebyshev: $\Pr[|X - \mathbb{E}[X]| \ge] \le$

 $\Pr\left[X \ge \frac{3n}{4}\right] =$

For n > 3, Chebyshev is much better!

Coupon Collector Problem. X = # of trials to collect *n* coupons. Bound $Pr[X > 2nH_n]$ using Markov and Chebyshev.

Solution: $\mathbb{E}[X] =$

Markov: $\Pr[X > 2nH_n] \leq$

Chebyshev's Inequality: Example 2 Solution with Chebyshev: Recall that $X = \sum_{i \in [n]} X_i$, where • X_i is the number of trials to collect the i^{th} coupon • $X_i \sim Geom\left(\frac{n-i+1}{n}\right)$

• Random variables X_i are independent

$$\operatorname{Var}[X] = \operatorname{Var}\left[\sum_{i\in[n]}^{1} X_{i}\right] = \sum_{i\in[n]}^{1} \operatorname{Var}[X_{i}]$$
$$\operatorname{Var}[X_{i}] = \frac{1-p}{p^{2}} \le \frac{1}{p^{2}} = \frac{n^{2}}{(n-i+1)^{2}}$$
$$\operatorname{Var}[X] = \sum_{i\in[n]}^{\infty} \operatorname{Var}[X_{i}] \le \sum_{i\in[n]}^{1} \frac{n^{2}}{(n-i+1)^{2}} = n^{2} \sum_{i\in[n]}^{\infty} \frac{1}{i^{2}} \le \frac{\pi^{2}}{6} n^{2}$$

Chebyshev: $\Pr[X > 2nH_n] \le \Pr[|X - nH_n| \ge nH_n]$

$$\leq \frac{\operatorname{Var}[X]}{(nH_n)^2}$$

Sofya Raskhodnikova; Randomness in Computing

CS 537 Union Bound: an Even Better Solution

Let F_i be the event that we failed to collect coupon of type *i* in $2n \ln n$ trials

$$Pr[X > 2nH_n] = Pr\left[\bigcup_{i \in [n]} F_i\right] \leq \sum_{i \in [n]} Pr[F_i] = n Pr[F_1]$$

$$\Pr[F_1] = \left(1 - \frac{1}{n}\right)^{2n \ln n} \le$$

CS Randomized Algorithm537 for the Median of an Array

• Given elements $a_1 \le a_2 \le \dots \le a_n$, their *median* is $a_{[\frac{n}{2}]}$.

Task: Find the median of an array if the elements are not sorted.

- Deterministic algorithm (median of medians): O(n) time.
- Today: simple randomized algorithm: O(n) time.
- Simplifying assumptions:
 - all elements are distinct;
 - n is odd;
 - we can sample from the array in constant time.
- Idea: Sample to find elements ℓ and u such that
 - 1. $\ell \leq m \leq u$, where *m* denotes the median.
 - 2. The number of input elements that lie in the interval (ℓ, u) is small.

Randomized Median Algorithm

Input: array A of elements
$$a_1, ..., a_n$$

Output: median of A
1. Let R be an array $r_1, ..., r_t$, where each r_i is chosen
from A u.i.r. with replacement, where $t = \lfloor n^{3/4} \rfloor$.
2. Sort R.
3. Let ℓ be the $\lfloor \frac{n^{3/4}}{2} - \sqrt{n} \rfloor$ -th smallest element in R.
4. Let u be the $\lfloor \frac{n^{3/4}}{2} + \sqrt{n} \rfloor$ -th smallest element in R.
5. Use PARTITION from Quicksort to compute
 $C = \{a \in A \mid \ell \le a \le u\},\ n_\ell = |\{a \in A \mid a < \ell\}| \text{ and } n_u = |\{a \in A \mid a > u\}|\$
6. If $n_\ell > \lfloor \frac{n}{2} \rfloor$ or $n_u > \lfloor \frac{n}{2} \rfloor$ then fail.
7. If $|C| \le 4n^{3/4}$ then sort C; otherwise fail.
8. Output the $(\lfloor \frac{n}{2} \rfloor - n_\ell + 1)$ -th smallest element in C.

l

View of sorted A:

9/26/2024

m

R

u

Theorem 1

Randomized Median Algorithm (RMA) terminates in O(n) time.

It outputs either fail or the median.

Theorem 2

RMA outputs **fail** with probability at most $n^{-1/4}$.

Proof: Bad events $\mathcal{E}_{1}, \mathcal{E}_{2}$, and \mathcal{E}_{3} $Y_{1} = |\{i \in [t]: r_{i} \leq m\}|$ $Y_{1} = |\{i \in [t]: r_{i} \geq m\}|$ $\mathcal{E}_{1}: Y_{1} < \frac{n^{3/4}}{2} - \sqrt{n}$ $\mathcal{E}_{2}: Y_{2} < \frac{n^{3/4}}{2} - \sqrt{n}$ $\mathcal{E}_{3}: |C| > 4n^{3/4}$

• RMA fails iff $\mathcal{E}_1 \cup \mathcal{E}_2 \cup \mathcal{E}_3$ occurs

Lemma 1.
$$\Pr[\mathcal{E}_1] \leq \frac{1}{4} \cdot \frac{1}{n^{1/4}}$$

$$Y_{1} = |\{i \in [t]: r_{i} \le m\}|$$
$$\mathcal{E}_{1}: \quad Y_{1} < \frac{n^{3/4}}{2} - \sqrt{n}$$

Proof: Recall: $t = n^{3/4}$. For all $i \in [t]$, define

 $X_i = \begin{cases} 1 & \text{if } r_i \le m \\ 0 & \text{otherwise} \end{cases} \qquad p = \Pr[X_i = 1] =$

$$Y_1 = \sum_{i \in [t]} X_i \qquad \mathbb{E}[Y_1] =$$
$$Var[Y_1] =$$

By Chebyshev:
$$\Pr[\mathcal{E}_1] = \Pr\left[Y_1 < \frac{n^{3/4}}{2} - \sqrt{n}\right] \leq \Pr[|Y_1 - \mathbb{E}[Y_1]| > \sqrt{n}]$$

Lemma 2.
$$\Pr[\mathcal{E}_2] \leq \frac{1}{4} \cdot \frac{1}{n^{1/4}}$$

Proof: The same as proof for Lemma 1.

$$Y_{2} = |\{i \in [t]: r_{i} \ge m\}|$$
$$\mathcal{E}_{2}: \quad Y_{2} < \frac{n^{3/4}}{2} - \sqrt{n}$$

Lemma 3.
$$\Pr[\mathcal{E}_3] \leq \frac{1}{2} \cdot \frac{1}{n^{1/4}}$$

 \mathcal{E}_3 : $|C| > 4n^{3/4}$

Proof: Define events

 $\mathcal{E}_{3,1}$: $\geq 2n^{3/4}$ elements of *C* are greater than the median *m* $\mathcal{E}_{3,2}$: $\geq 2n^{3/4}$ elements of *C* are smaller than the median *m*

By a union bound, $\Pr[\boldsymbol{\mathcal{E}}_3] \leq \Pr[\boldsymbol{\mathcal{E}}_{3,1}] + \Pr[\boldsymbol{\mathcal{E}}_{3,2}] = 2 \Pr[\boldsymbol{\mathcal{E}}_{3,1}]$

 $\mathcal{E}_{3,1} \text{ holds} \Leftrightarrow \text{rank of } u \text{ in } A \text{ is}$ but we threw out $\frac{n^{3/4}}{2} - \sqrt{n}$ samples in R with a larger value than u $\geq \frac{n^{3/4}}{2} - \sqrt{n} \text{ samples in } R \text{ are among} \qquad \text{largest in } A$

Lemma 3.
$$\Pr[\mathcal{E}_3] \leq \frac{1}{2} \cdot \frac{1}{n^{1/4}}$$

$$\mathcal{E}_3: |C| > 4n^{3/4}$$

Proof: $\mathcal{E}_{3,1}$: $\geq 2n^{3/4}$ elements of *C* are greater than the median *m* $\mathcal{E}_{3,1}$ holds $\Leftrightarrow \geq \frac{n^{3/4}}{2} - \sqrt{n}$ samples in *R* are among $\frac{n}{2} - 2n^{3/4}$ largest in *A* Recall: $t = n^{3/4}$. For all $i \in [t]$, define

m

$$X_{i} = \begin{cases} 1 & \text{if } r_{i} \text{ isamong } \frac{n}{2} - 2n^{3/4} \text{ largest elements in } A \\ 0 & \text{otherwise} \end{cases}$$
$$X = \sum_{i \in [t]} X_{i}$$

CS 537 Monte Carlo vs. Las Vegas

- Monte Carlo: a randomized algorithm that may fail or produce an incorrect answer.
- Las Vegas: a randomized algorithm that always returns the right answer.
- We can get a Las Vegas algorithm from a Monte Carlo algorithm that may fail by repeating until it succeeds.