LECTURE 9

Last time
• Chebyshev’s inequality
• Variance of Binomial and Geometric RVs

Today
• Computing the median of an array
Randomized Algorithm for the Median of an Array

- Given elements $a_1 \leq a_2 \leq \cdots \leq a_n$, their median is $a_{\lfloor n/2 \rfloor}$.

Task: Find the median of an array if the elements are not sorted.

- Deterministic algorithm (median of medians): $O(n)$ time.
- Today: simple randomized algorithm: $O(n)$ time.

- Simplifying assumptions:
 - all elements are distinct;
 - n is odd;
 - we can sample from the array in constant time.

- **Idea:** Sample to find elements ℓ and u such that
 1. $\ell \leq m \leq u$, where m denotes the median.
 2. The number of input elements that lie in the interval (ℓ, u) is small.
Randomized Median Algorithm

Input: array A of elements $a_1, ..., a_n$

Output: median of A

1. Let R be an array $r_1, ..., r_t$, where each r_i is chosen from A u.i.r. with replacement, where $t = \lfloor n^{3/4} \rfloor$.
2. Sort R.
3. Let ℓ be the $\left\lfloor \frac{n^{3/4}}{2} - \sqrt{n} \right\rfloor$-th smallest element in R.
4. Let u be the $\left\lfloor \frac{n^{3/4}}{2} + \sqrt{n} \right\rfloor$-th smallest element in R.
5. Use PARTITION from Quicksort to compute $C = \{a \in A \mid \ell \leq a \leq u\}$, $n_\ell = |\{a \in A \mid a < \ell \}|$ and $n_u = |\{a \in A \mid a > u \}|$
6. If $n_\ell > \left\lfloor \frac{n}{2} \right\rfloor$ or $n_u > \left\lfloor \frac{n}{2} \right\rfloor$ then fail.
7. If $|C| \leq 4n^{3/4}$ then sort C; otherwise fail.
8. Output the $\left(\left\lfloor \frac{n}{2} \right\rfloor - n_\ell + 1\right)$-th smallest element in C.

View of sorted A:
Analysis

<table>
<thead>
<tr>
<th>Theorem 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized Median Algorithm (RMA) terminates in $O(n)$ time. It outputs either fail or the median.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMA outputs fail with probability at most $n^{-1/4}$.</td>
</tr>
</tbody>
</table>

Proof: Bad events \mathcal{E}_1, \mathcal{E}_2, and \mathcal{E}_3

$Y_1 = |\{i \in [t]: r_i \leq m\}|$

$Y_2 = |\{i \in [t]: r_i \geq m\}|$

\mathcal{E}_1: \[Y_1 < \frac{n^{3/4}}{2} - \sqrt{n} \]

\mathcal{E}_2: \[Y_2 < \frac{n^{3/4}}{2} - \sqrt{n} \]

\mathcal{E}_3: \[|C| > 4n^{3/4} \]

- RMA fails iff $\mathcal{E}_1 \cup \mathcal{E}_2 \cup \mathcal{E}_3$ occurs
Lemma 1. \(\Pr[\mathcal{E}_1] \leq \frac{1}{4} \cdot \frac{1}{n^{1/4}} \)

Proof: Recall: \(t = n^{3/4} \). For all \(i \in [t] \), define

\[
X_i = \begin{cases}
1 & \text{if } r_i \leq m \\
0 & \text{otherwise}
\end{cases}
\]

\[
p = \Pr[X_1 = 1] =
\]

\[
Y_1 = \sum_{i \in [t]} X_i
\]

\[
\mathbb{E}[Y_1] =
\]

\[
\text{Var}[Y_1] =
\]

By Chebyshev: \(\Pr[\mathcal{E}_1] = \Pr \left[Y_1 < \frac{n^{3/4}}{2} - \sqrt{n} \right] \leq \Pr\left[|Y_1 - \mathbb{E}[Y_1]| > \sqrt{n} \right] \)
Lemma 2.

\[\text{Pr}[\mathcal{E}_2] \leq \frac{1}{4} \cdot \frac{1}{n^{1/4}} \]

Proof: The same as proof for Lemma 1.

\[Y_2 = |\{i \in [t]: r_i \geq m\}| \]

\[\mathcal{E}_2: \quad Y_2 < \frac{n^{3/4}}{2} - \sqrt{n} \]
Lemma 3. \(\Pr[\mathcal{E}_3] \leq \frac{1}{2} \cdot \frac{1}{n^{1/4}} \)

\[\mathcal{E}_3: \quad |C| > 4n^{3/4} \]

Proof: Define events

\[\mathcal{E}_{3,1}: \quad \geq 2n^{3/4} \text{ elements of } C \text{ are greater than the median } m \]

\[\mathcal{E}_{3,2}: \quad \geq 2n^{3/4} \text{ elements of } C \text{ are smaller than the median } m \]

By a union bound, \(\Pr[\mathcal{E}_3] \leq \Pr[\mathcal{E}_{3,1}] + \Pr[\mathcal{E}_{3,2}] = 2 \Pr[\mathcal{E}_{3,1}] \)

\(\mathcal{E}_{3,1} \) holds \(\iff \) rank of \(u \) in \(A \) is

but we threw out \(\frac{n^{3/4}}{2} - \sqrt{n} \) samples in \(R \) with a larger value than \(u \)

\(\geq \frac{n^{3/4}}{2} - \sqrt{n} \) samples in \(R \) are among \(C \) largest in \(A \)
Analysis

Lemma 3. \(\Pr[\mathcal{E}_3] \leq \frac{1}{2} \cdot \frac{1}{n^{1/4}} \)

\(\mathcal{E}_3: \) \(|C| > 4n^{3/4} \)

Proof:

\(\mathcal{E}_{3,1}: \) \(\geq 2n^{3/4} \) elements of \(C \) are greater than the median \(m \)

\(\mathcal{E}_{3,1} \) holds \(\iff \geq \frac{n^{3/4}}{2} - \sqrt{n} \) samples in \(R \) are among \(\frac{n}{2} - 2n^{3/4} \) largest in \(A \)

Recall: \(t = n^{3/4} \). For all \(i \in [t] \), define

\[
X_i = \begin{cases}
1 & \text{if } r_i \text{ is among } \frac{n}{2} - 2n^{3/4} \text{ largest in } A \\
0 & \text{otherwise}
\end{cases}
\]

\[
X = \sum_{i \in [t]} X_i
\]
Monte Carlo vs. Las Vegas

- **Monte Carlo**: a randomized algorithm that may fail or produce an incorrect answer.
- **Las Vegas**: a randomized algorithm that always returns the right answer.

We can get a Las Vegas algorithm from a Monte Carlo algorithm that may fail by repeating until it succeeds.