
10/1/2024

Randomness in Computing

LECTURE 9 
Last time
• Chebyshev’s inequality

• Computing the median of an 

array

Today
• Finish computing the median of 

an array

• Chernoff bounds
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Randomized Median Algorithm

1. Let 𝑅 be an array 𝑟1, … , 𝑟𝑡, where each 𝑟𝑖 is chosen 
from 𝐴 u.i.r. with replacement, where 𝑡 = 𝑛3/4 .

2. Sort 𝑅.

3. Let ℓ be the 
𝑛3/4

2
− 𝑛 -th smallest element in 𝑅.

4. Let 𝑢 be the 
𝑛3/4

2
+ 𝑛 -th smallest element in 𝑅.

5. Use PARTITION from Quicksort to compute
𝐶 = {𝑎 ∈ A ∣ ℓ ≤ 𝑎 ≤ 𝑢},

𝑛ℓ = 𝑎 ∈ 𝐴 𝑎 < ℓ  and 𝑛𝑢 = | 𝑎 ∈ 𝐴 𝑎 > 𝑢 |

6. If 𝑛ℓ >
𝑛

2
 or 𝑛𝑢 >

𝑛

2
 then fail.

7. If 𝐶 ≤ 4𝑛3/4 then sort 𝐶; otherwise, fail.
8. Output the 

𝑛

2
− 𝑛ℓ + 1 -th smallest element in 𝐶.

Input: array 𝐴 of elements 𝑎1, … , 𝑎𝑛
Output: median of 𝐴

View of sorted 𝐴:
Type 
equation 
here.

𝑚 𝑢ℓ

𝑅

𝐶𝑛ℓ 𝑛𝑢



Analysis: recall from last lecture

Proof: Bad events 𝓔1, 𝓔2, and 𝓔3

• RMA fails iff 𝓔1 ∪ 𝓔2 ∪ 𝓔3 occurs

Theorem 1

Randomized Median Algorithm (RMA) terminates in 𝑂(𝑛) time.

It outputs either fail or the median.

Theorem 2

RMA outputs fail with probability at most 𝑛−1/4.

𝓔3:  𝐶 > 4𝑛3/4 

Lemma 1. Pr 𝓔1 ≤
1

4
⋅

1

𝑛1/4

Lemma 2. Pr 𝓔2 ≤
1

4
⋅

1

𝑛1/4



Analysis

Proof: Define events

𝓔3,1 holds ⇔ rank of 𝑢 in 𝐴 is

     but we threw out 
𝑛3/4

2
− 𝑛 samples in 𝑅 with a larger value than 𝑢

≥
𝑛3/4

2
− 𝑛 samples in 𝑅 are among                               largest in 𝐴

Lemma 3. Pr 𝓔3 ≤
1

2
⋅

1

𝑛1/4
𝓔3:  𝐶 > 4𝑛3/4 

Type 
equation 
here.

𝑚 𝑢ℓ

𝐶

𝓔3,1:  ≥ 2𝑛3/4 elements of 𝐶 are greater than the median 𝑚

𝓔3,2:  ≥ 2𝑛3/4 elements of 𝐶 are smaller than the median 𝑚

By a union bound, Pr 𝓔3 ≤ Pr 𝓔3,1 + Pr 𝓔3,2 = 2 Pr 𝓔3,1

≥
𝑛

2
+ 2𝑛3/4 

𝑛

2
− 2𝑛3/4 



Analysis

Proof: 

𝓔3,1 holds ⇔ ≥
𝑛3/4

2
− 𝑛 samples in 𝑅 are among  

𝑛

2
− 2𝑛3/4  largest in 𝐴

Recall: 𝑡 = 𝑛3/4. For all 𝑖 ∈ 𝑡 , define

    𝑋𝑖 = ൝
1 if 𝑟𝑖  isamong 

𝑛

2
− 2𝑛3/4 largest in 𝐴 

0 otherwise

Lemma 3. Pr 𝓔3 ≤
1

2
⋅

1

𝑛1/4
𝓔3:  𝐶 > 4𝑛3/4 

Type 
equation 
here.

𝑚 𝑢ℓ

𝐶

𝓔3,1:  ≥ 2𝑛3/4 elements of 𝐶 are greater than the median 𝑚

𝑋 = ෍

𝑖∈ 𝑡

𝑋𝑖



Monte Carlo vs. Las Vegas

• Monte Carlo: a randomized algorithm that may 

fail or produce an incorrect answer.

• Las Vegas: a randomized algorithm that always 

returns the right answer.

• We can get a Las Vegas algorithm from a Monte Carlo algorithm 

that may fail by repeating until it succeeds.
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Tail Bounds So Far
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Markov Inequality

For all nonnegative random variables 𝑋 and all 𝑎 > 0,

Pr 𝑋 ≥ 𝑎 ≤
𝔼 [𝑋]

𝑎
.

Chebyshev’s Inequality

For all random variables 𝑋 and all 𝑎 > 0,

Pr(|𝑋 − 𝔼 𝑋 | ≥ 𝑎) ≤
Var(𝑋)

𝑎2
.



Sums of independent RVs

• Bernoulli trials:                                                                                   

X1, … , 𝑋𝑛 are mutually independent 0-1 RVs.

Pr 𝑋𝑖 = 1 = 𝑝

• Poisson trials (generalization):                                                         

X1, … , 𝑋𝑛 are mutually independent 0-1 RVs.

Pr 𝑋𝑖 = 1 = 𝑝𝑖

• Let 𝑋 = 𝑋1 + ⋯ + 𝑋𝑛 and 𝜇 = 𝔼 𝑋 . Then 𝜇 is

𝔼 𝑋1 + ⋯ + 𝑋𝑛 = 𝔼 𝑋1 + ⋯ + 𝔼 𝑋𝑛 = 𝑝1 + ⋯ + 𝑝𝑛

• Want to bound  Pr[𝑋 ≥ 1 + 𝛿 𝜇]  for 𝛿 > 0

                      and  Pr[𝑋 ≤ 1 − 𝛿 𝜇]  for 𝛿 ∈ (0,1)

                      in terms of 𝜇 and 𝛿.
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≠ Poisson RVs

Generalization of binomial RVs

upper tail

lower tail



Sums of Independent Bernoullis

10/1/2024 Sofya Raskhodnikova; Randomness in Computing

Chernoff Bound (Upper Tail)

Let X1, … , 𝑋𝑛 be independent Bernoulli RVs.                                  
Let 𝑋 = 𝑋1 + ⋯ + 𝑋𝑛 and 𝜇 = 𝔼 𝑋 . Then

• (stronger) for all 𝛿 > 0,

Pr 𝑋 ≥ 1 + 𝛿 𝜇 ≤
𝑒𝛿

1 + 𝛿 1+𝛿

𝜇

.

• (easier to use) for all 𝛿 ∈ (0,1],

Pr 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒−𝜇𝛿2/3.



Obtaining the bounds 

Ideas: 

• Consider RV 𝑒𝑡𝑋, where 𝑡 is a parameter.

• Apply Markov for 𝑒𝑡𝑋.

• Use independence of 𝑋𝑖 (and hence 𝑒𝑡𝑋𝑖)

• Pick the value of 𝑡 to get the best bound.

Aside:

• 𝔼 𝑋𝑘  is called the 𝑘-th moment of 𝑋.

• 𝔼 𝑒𝑡𝑋 = σ𝑘=0
∞ 𝑡𝑘 𝔼 𝑋𝑘

𝑘!
       (power series)

• 𝔼 𝑒𝑡𝑋  is the moment-generating function of 𝑋.
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Proof of (stronger) Chernoff Bound

• For all real 𝑡 > 0,
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Pr 𝑋 ≥ 1 + 𝛿 𝜇 = Pr e𝒕𝑿 ≥ e𝒕 𝟏+𝛅 𝛍 ≤
𝔼 e𝒕𝑿

e𝒕 𝟏+𝛅 𝛍

by Markov

• 𝔼 e𝒕𝑿 = 𝔼 e𝒕(𝑿𝟏+⋯+𝑿𝒏) = 𝔼 e𝒕𝑿𝟏 ⋅ e𝒕𝑿𝟐 ⋅ … ⋅ e𝒕𝑿𝒏

= 𝔼 e𝒕𝑿𝟏 ⋅ 𝔼 e𝒕𝑿𝟐 ⋅ … ⋅ 𝔼 e𝒕𝑿𝒏 𝑿𝒊 are mutually independent ,
so are e𝒕𝑿𝒊  

• e𝒕𝑿𝒊 = ቊ
e𝒕 w. p. 𝑝𝑖

1 w. p.  1 − 𝑝𝑖

• 𝔼 e𝒕𝑿𝒊 =

• Then 𝔼 e𝒕𝑿 ≤



Proof of (stronger) Chernoff Bound

• For all real 𝑡 > 0,

Pr 𝑋 ≥ 1 + 𝛿 𝜇 = Pr e𝒕𝑿 ≥ e𝒕 𝟏+𝛅 𝛍 ≤
𝔼 e𝒕𝑿

e𝒕 𝟏+𝛅 𝛍

by Markov

≤
e 𝐞𝒕−𝟏 𝛍

e𝒕 𝟏+𝛅 𝛍 𝔼 e𝒕𝑿 ≤ e 𝐞𝒕−𝟏 𝛍

=
e𝐞𝒕−𝟏

e𝒕 𝟏+𝛅

𝛍

• To minimize  
e𝐞𝒕−𝟏

e𝒕 𝟏+𝛅 = e𝐞𝒕−𝟏 −𝒕 𝟏+𝛅

we minimize 𝐞𝒕 − 𝟏 − 𝒕 𝟏 + 𝛅
Setting the derivative 

w.r. 𝑡 to 0 gives
𝐞𝒕 = 𝟏 + 𝛅



Sums of Independent Bernoullis
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Chernoff Bound (Upper Tail)

Let X1, … , 𝑋𝑛 be independent Bernoulli RVs.                                  
Let 𝑋 = 𝑋1 + ⋯ + 𝑋𝑛 and 𝜇 = 𝔼 𝑋 . Then

• (stronger) for all 𝛿 > 0,

Pr 𝑋 ≥ 1 + 𝛿 𝜇 ≤
𝑒𝛿

1 + 𝛿 1+𝛿

𝜇

.

• (easier to use) for all 𝛿 ∈ (0,1],

Pr 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒−𝜇𝛿2/3.



Proof of weaker Chernoff Bound

• For all real 𝑡 > 0,

Pr 𝑋 ≥ 1 + 𝛿 𝜇 = Pr e𝒕𝑿 ≥ e𝒕 𝟏+𝛅 𝛍 ≤
𝔼 e𝒕𝑿

e𝒕 𝟏+𝛅 𝛍

by Markov

≤
e𝐞𝒕−𝟏

e𝒕 𝟏+𝛅

𝛍

• To minimize  
e𝐞𝒕−𝟏

e𝒕 𝟏+𝛅 = e𝐞𝒕−𝟏 −𝒕 𝟏+𝛅

we minimize 𝐞𝒕 − 𝟏 − 𝒕 𝟏 + 𝛅
Setting the derivative 

w.r. 𝑡 to 0 gives
𝐞𝒕 = 𝟏 + 𝛅

• To derive the easier Chernoff bound, we need to show ∀𝛿 ∈ 0,1 :

𝐞𝒕 − 𝟏 − 𝒕 𝟏 + 𝛅 ≤ −𝜹𝟐/𝟑, where 𝒕 = 𝒍𝒏(𝟏 + 𝛅)



Sums of Independent Bernoullis
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Chernoff Bound (Upper Tail)

Let X1, … , 𝑋𝑛 be independent Bernoulli RVs.                                  
Let 𝑋 = 𝑋1 + ⋯ + 𝑋𝑛 and 𝜇 = 𝔼 𝑋 . Then

• (stronger) for all 𝛿 > 0,

Pr 𝑋 ≥ 1 + 𝛿 𝜇 ≤
𝑒𝛿

1 + 𝛿 1+𝛿

𝜇

.

• (easier to use) for all 𝛿 ∈ (0,1],

Pr 𝑋 ≥ 1 + 𝛿 𝜇 ≤ 𝑒−𝜇𝛿2/3.



Sums of Independent Bernoullis

10/1/2024 Sofya Raskhodnikova; Randomness in Computing

Chernoff Bound (Lower Tail)

Let X1, … , 𝑋𝑛 be independent Bernoulli RVs.                                  

Let 𝑋 = 𝑋1 + ⋯ + 𝑋𝑛 and 𝜇 = 𝔼 𝑋 . Then

• (stronger) for all 𝛿 ∈ (0,1),

Pr 𝑋 ≤ 1 − 𝛿 𝜇 ≤
𝑒−𝛿

1 − 𝛿 1−𝛿

𝜇

.

• (easier to use) for all 𝛿 ∈ (0,1),

Pr 𝑋 ≤ 1 − 𝛿 𝜇 ≤ 𝑒−𝜇𝛿2/2.



Exercise 2

• The Halting Problem Team wins each hockey game they play with 

probability 1/3. Assuming outcomes of the games are independent, 

derive an upper bound on the probability that they have a winning 

season in 𝑛 games.

• The Halting Problem Team hires a new coach, and critics revise 

their probability of winning each game to 3/4.  Derive an upper 

bound on the probability they suffer a losing season.
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