

Randomness in Computing

LECTURE 9

Last time

- Chebyshev's inequality
- Computing the median of an array

Today

- Finish computing the median of an array
 - Chernoff bounds

Randomized Median Algorithm

Input: array A of elements
$$a_1, ..., a_n$$

Output: median of A
1. Let R be an array $r_1, ..., r_t$, where each r_i is chosen
from A u.i.r. with replacement, where $t = \lfloor n^{3/4} \rfloor$.
2. Sort R.
3. Let ℓ be the $\lfloor \frac{n^{3/4}}{2} - \sqrt{n} \rfloor$ -th smallest element in R.
4. Let u be the $\lfloor \frac{n^{3/4}}{2} + \sqrt{n} \rfloor$ -th smallest element in R.
5. Use PARTITION from Quicksort to compute
 $C = \{a \in A \mid \ell \le a \le u\},\ n_\ell = |\{a \in A \mid a < \ell\}| \text{ and } n_u = |\{a \in A \mid a > u\}|\$
6. If $n_\ell > \lfloor \frac{n}{2} \rfloor$ or $n_u > \lfloor \frac{n}{2} \rfloor$ then fail.
7. If $|C| \le 4n^{3/4}$ then sort C; otherwise, fail.
8. Output the $(\lfloor \frac{n}{2} \rfloor - n_\ell + 1)$ -th smallest element in C.

m

C

 $\boldsymbol{\mathcal{U}}$

 \tilde{n}_u

View of sorted *A*:

 \hat{n}_{ℓ}

P

Analysis: recall from last lecture

Theorem 1

Randomized Median Algorithm (RMA) terminates in O(n) time.

It outputs either fail or the median.

Theorem 2

RMA outputs **fail** with probability at most $n^{-1/4}$.

Proof: Bad events $\mathcal{E}_1, \mathcal{E}_2$, and \mathcal{E}_3

• RMA fails iff $\mathcal{E}_1 \cup \mathcal{E}_2 \cup \mathcal{E}_3$ occurs

Lemma 1. $\Pr[\mathcal{E}_1] \le \frac{1}{4} \cdot \frac{1}{n^{1/4}}$

Lemma 2.
$$\Pr[\mathcal{E}_2] \leq \frac{1}{4} \cdot \frac{1}{n^{1/4}}$$

 \mathcal{E}_3 : $|C| > 4n^{3/4}$

Lemma 3.
$$\Pr[\mathcal{E}_3] \leq \frac{1}{2} \cdot \frac{1}{n^{1/4}}$$

 \mathcal{E}_3 : $|C| > 4n^{3/4}$

Proof: Define events

$$\begin{split} \boldsymbol{\mathcal{E}}_{3,1}: &\geq 2n^{3/4} \text{ elements of } C \text{ are greater than the median } m \\ \boldsymbol{\mathcal{E}}_{3,2}: &\geq 2n^{3/4} \text{ elements of } C \text{ are smaller than the median } m \\ \text{By a union bound, } \Pr[\boldsymbol{\mathcal{E}}_3] &\leq \Pr[\boldsymbol{\mathcal{E}}_{3,1}] + \Pr[\boldsymbol{\mathcal{E}}_{3,2}] = 2\Pr[\boldsymbol{\mathcal{E}}_{3,1}] \\ \boldsymbol{\mathcal{E}}_{3,1} \text{ holds } \Leftrightarrow \text{ rank of } u \text{ in } A \text{ is } \geq \left[\frac{n}{2}\right] + 2n^{3/4} \\ \text{ but we threw out } \frac{n^{3/4}}{2} - \sqrt{n} \text{ samples in } R \text{ with a larger value than } u \end{split}$$

 $\geq \frac{n^{3/4}}{2} - \sqrt{n}$ samples in *R* are among $\left[\frac{n}{2}\right] - 2n^{3/4}$ largest in *A*

l l m u u l

Lemma 3.
$$\Pr[\mathcal{E}_3] \leq \frac{1}{2} \cdot \frac{1}{n^{1/4}}$$

$$\mathcal{E}_3: |C| > 4n^{3/4}$$

Proof: $\mathcal{E}_{3,1}$: $\geq 2n^{3/4}$ elements of *C* are greater than the median *m* $\mathcal{E}_{3,1}$ holds $\Leftrightarrow \geq \frac{n^{3/4}}{2} - \sqrt{n}$ samples in *R* are among $\frac{n}{2} - 2n^{3/4}$ largest in *A* Recall: $t = n^{3/4}$. For all $i \in [t]$, define

$$X_{i} = \begin{cases} 1 & \text{if } r_{i} \text{ isamong } \frac{n}{2} - 2n^{3/4} \text{ largest in } A \\ 0 & \text{otherwise} \end{cases}$$
$$X = \sum_{i \in [t]} X_{i}$$

CS 537 Monte Carlo vs. Las Vegas

- Monte Carlo: a randomized algorithm that may fail or produce an incorrect answer.
- Las Vegas: a randomized algorithm that always returns the right answer.
- We can get a Las Vegas algorithm from a Monte Carlo algorithm that may fail by repeating until it succeeds.

Markov Inequality

For all nonnegative random variables *X* and all a > 0, $\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$.

Chebyshev's Inequality
For all random variables X and all
$$a > 0$$
,
 $Pr(|X - \mathbb{E}[X]| \ge a) \le \frac{Var(X)}{a^2}$.

CS Sums of independent RVs

• Bernoulli trials:

 $X_1, ..., X_n$ are mutually independent 0-1 RVs. $\Pr[X_i = 1] = p$

• Poisson trials (generalization): \neq Poisson RVs X₁,..., X_n are mutually independent 0-1 RVs. Pr[X_i = 1] = p_i

upper tail

lower tail

Binomial distribution, n=151, p=0.241

Generalization of binomial RVs

• Let
$$X = X_1 + \dots + X_n$$
 and $\mu = \mathbb{E}[X]$. Then μ is
 $\mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n] = p_1 + \dots + p_n$

• Want to bound $\Pr[X \ge (1 + \delta)\mu]$ for $\delta > 0$ and $\Pr[X \le (1 - \delta)\mu]$ for $\delta \in (0,1)$ in terms of μ and δ .

Chernoff Bound (Upper Tail) Let X_1, \ldots, X_n be independent Bernoulli RVs. Let $X = X_1 + \dots + X_n$ and $\mu = \mathbb{E}[X]$. Then • (stronger) for all $\delta > 0$, $\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}.$ • (easier to use) for all $\delta \in (0,1]$, $\Pr[X \ge (1+\delta)\mu] \le e^{-\mu\delta^2/3}.$

Ideas:

- Consider RV e^{tX} , where t is a parameter.
- Apply Markov for e^{tX} .
- Use independence of X_i (and hence e^{tX_i})
- Pick the value of *t* to get the best bound.

Aside:

• $\mathbb{E}[X^k]$ is called the *k*-th moment of *X*.

•
$$\mathbb{E}[e^{tX}] = \sum_{k=0}^{\infty} \frac{t^k \mathbb{E}[X^k]}{k!}$$
 (power series)

• $\mathbb{E}[e^{tX}]$ is the moment-generating function of *X*.

S Proof of (stronger) Chernoff Bound

- by Markov For all real t > 0, $\Pr[X \ge (1+\delta)\mu] = \Pr\left[e^{tX} \ge e^{t(1+\delta)\mu}\right] \le \frac{\mathbb{E}\left[e^{tX}\right]}{\frac{1}{2}t(1+\delta)\mu}$ • $\mathbb{E}[e^{tX}] = \mathbb{E}[e^{t(X_1 + \dots + X_n)}] = \mathbb{E}[e^{tX_1} \cdot e^{tX_2} \cdot \dots \cdot e^{tX_n}]$ $= \mathbb{E}[e^{tX_1}] \cdot \mathbb{E}[e^{tX_2}] \cdot \ldots \cdot \mathbb{E}[e^{tX_n}] \begin{vmatrix} X_i \text{ are mutually independent,} \\ so \text{ are } e^{tX_i} \end{vmatrix}$ • $e^{tX_i} = \begin{cases} e^t & \text{w.p.} & p_i \\ 1 & \text{w.p.} & 1 - p_i \end{cases}$ $\mathbb{E}[\mathrm{e}^{tX_i}] =$
- Then $\mathbb{E}[e^{tX}] \leq$

CS 537 Proof of (stronger) Chernoff Bound

Chernoff Bound (Upper Tail) Let X_1, \ldots, X_n be independent Bernoulli RVs. Let $X = X_1 + \dots + X_n$ and $\mu = \mathbb{E}[X]$. Then • (stronger) for all $\delta > 0$, $\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}.$ • (easier to use) for all $\delta \in (0,1]$, $\Pr[X \ge (1+\delta)\mu] \le e^{-\mu\delta^2/3}.$

CS 537 Proof of weaker Chernoff Bound

- by Markov For all real t > 0, $\Pr[X \ge (1+\delta)\mu] = \Pr[e^{tX} \ge e^{t(1+\delta)\mu}] \le \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\delta)\mu}}$ $\leq \left[\frac{\mathrm{e}^{\mathrm{e}^{t}-1}}{\mathrm{e}^{t(1+\delta)}}\right]^{\mu}$ • To minimize $\frac{e^{e^t-1}}{e^{t(1+\delta)}} = e^{e^t-1-t(1+\delta)}$ we minimize $\mathbf{e}^t - \mathbf{1} - t(\mathbf{1} + \mathbf{\delta})$ Setting the derivative $e^t = 1 + \delta$ w.r. t to 0 gives
- To derive the easier Chernoff bound, we need to show $\forall \delta \in (0,1]$: $e^t - 1 - t(1 + \delta) \le -\delta^2/3$, where $t = ln(1 + \delta)$

Chernoff Bound (Upper Tail) Let X_1, \ldots, X_n be independent Bernoulli RVs. Let $X = X_1 + \dots + X_n$ and $\mu = \mathbb{E}[X]$. Then • (stronger) for all $\delta > 0$, $\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}.$ • (easier to use) for all $\delta \in (0,1]$, $\Pr[X \ge (1+\delta)\mu] \le e^{-\mu\delta^2/3}.$

Chernoff Bound (Lower Tail)
Let
$$X_1, ..., X_n$$
 be independent Bernoulli RVs.
Let $X = X_1 + \dots + X_n$ and $\mu = \mathbb{E}[X]$. Then
• (stronger) for all $\delta \in (0,1)$,
 $\Pr[X \le (1 - \delta)\mu] \le \left(\frac{e^{-\delta}}{(1 - \delta)^{1 - \delta}}\right)^{\mu}$.
• (easier to use) for all $\delta \in (0,1)$,
 $\Pr[X \le (1 - \delta)\mu] \le e^{-\mu\delta^2/2}$.

• The Halting Problem Team wins each hockey game they play with probability 1/3. Assuming outcomes of the games are independent, derive an upper bound on the probability that they have a winning season in *n* games.

• The Halting Problem Team hires a new coach, and critics revise their probability of winning each game to 3/4. Derive an upper bound on the probability they suffer a losing season.