

Randomness in Computing

- Hoeffding Bounds
- Applications of Chernoff-Hoeffding Bounds
 - Estimating a Parameter

Today

- Applications of Chernoff-Hoeffding Bounds
 - Set Balancing
 - Routing on the hypercube

Sums of Independent Bounded RVs

Hoeffding Bound

Let $X_1, ..., X_n$ be independent random variables with $\Pr[a \le X_i \le b] = 1$. Let $X = X_1 + \cdots + X_n$ and $\mu = \mathbb{E}[X]$. Then for all $\epsilon > 0$,

- (upper tail) $\Pr[X \ge \mu + \epsilon n] \le e^{-2n\epsilon^2/(b-a)^2}$
- (lower tail) $\Pr[X \le \mu \epsilon n] \le e^{-2n\epsilon^2/(b-a)^2}$

CS 537 Application: Set Balancing

- **Given:** an $n \times m$ matrix A with 0-1 entries
- **Definition:** $||(x_1, ..., x_n)||_{\infty} = \max_{i \in [n]} |x_i|$
- Find: $b \in \{-1,1\}^m$ minimizing $||Ab||_{\infty}$

Partition subjects into two groups, so that each feature is balanced.

Application: Set Balancing

Algorithm: Choose each b_i independently from $\{-1,1\}$. Theorem. $\Pr[||Ab||_{\infty} \ge \sqrt{4m \ln n}] \le 2/n.$ **Proof:** Let $\overline{a_i}$ be the vector in row *i* of *A* for all $i \in [n]$. Let B_i be the (bad) event that $|\overline{a_i} \cdot b| \ge \sqrt{4m \ln n}$.

For $i \in [n]$, let Z_i be the random variable $\sum_{j \in [m]} a_{ij} b_j$.

m independent RVs

m

- $\mathbb{E}[Z_i] =$ Each is either +1 or -1 w.p. 1/2 (if $a_{ii} = 1$) or always 0 (if $a_{ij}=0$) • By Hoeffding, $\Pr[B_i] = \Pr[|Z_i| \ge \epsilon m] \le 2e^{-\frac{2\epsilon^2 m}{4}} = 2e^{-2\ln n} \le 2n^{-2}$
 - $\epsilon m = \sqrt{4m \ln n}$ By a union bound over all *n* rows, $\epsilon^2 = \frac{4 \ln n}{2}$ $\Pr\left[\left||Ab|\right|_{\infty} \ge \sqrt{4m\ln n}\right] = \Pr\left[\bigcup_{i=1}^{\infty} B_{i}\right]$

S Application: Routing on Hypercube

An *n*-dimensional *hypercube* is a directed graph with

- $N = 2^n$ nodes, each indexed by *n*-bit integer
- containing the directed edge (x, y) iff
 x and y differ in exactly one bit _____

x 001001 y 011001 011

001

010

000

111

101

110

100

For each depicted edge,

there is also the edge in

the opposite direction.

How many edges?

- Routing. Each node is a routing switch.
 Edges = communication channels
 An edge can carry one packet in one step.
- A *routing algorithm* specifies a path from *s* to *t* for each pair of nodes (*s*, *t*) and a *queuing policy* for ordering packets that are waiting for the same link (e.g., FIFO First In First Out or FTG Furthest to Go)

CS 537 Permutation Routing Problem

- Each node is the source of one packet
- Each node is the destination of one packet
- E.g., on a complete graph, it can be solved in one time step.
- > On sparse graphs?

Hypercube: N nodes, Nlog N edges.

Bit-Fixing Routing Algorithm for the Hypercube

- 1. Let *x* be the current node and *y* be the destination of a packet
- 2. Find smallest $i \in [n]$ such that $x_i \neq y_i$
- 3. Traverse the edge $(x, x_1 \dots x_{i-1} \overline{x_i} x_{i+1} \dots x_n)$

How long does it take to route a packet if there are no delays?

CS Bad example for congestion

• Transpose permutation (*n* is even)

From each x, send a packet to $(x_{n/2+1}, \dots, x_n, x_1, \dots, x_{n/2})$

Exercise: Show that Bit-Fixing Algorithm takes $\Omega(\sqrt{N})$ steps on transpose permutation.

• Known:

Any deterministic *oblivious* algorithm on a network with *N* nodes, each of outdegree *d*, takes $\Omega(\sqrt{N/d})$ steps on some permutation. Randomization is essential!

Randomized Routing Algorithm (RRA)

- 0. For each packet going from x to y, pick a node z uniformly and independently at random.
- 1. Use Bit-Fixing to route the packet from x to z.
- 2. Use Bit-Fixing to route the packet from z to y.

Proof:

Idea 1: Analyze Phase 1. (Phase 2 is ``symmetric'' going backwards; first think about waiting with Phase 2 until all packets are done with Phase 1.)

Idea 2: In an intermediate destination, each bit z_i is 0/1 uniformly & independently

Idea 3: # steps in Phase1 is (# bits to fix) + (waiting time in queues in Phase 1) $\leq n + \text{delay}$

Lemma

Let p_i be the path of some packet *i* in Phase 1.

Let S be the set of packets (other than i) whose routes pass through at least one edge of p_i . Then the delay of i is at most |S|.

Consider any packet *i*. It fails to reach its destination in phase 1 within 3n steps with probability at most $\frac{1}{N^2}$.

Proof: Let *X* be the number of packets (other than *i*) that use at least one edge from the path of *i*.

We would like to find an upper bound on $\mathbb{E}[X]$.

Consider any packet *i*. It fails to reach its destination in phase 1 within 3n steps with probability at most $\frac{1}{N^2}$.

Proof: Let X be the number of packets (other than i) that use at leastone edge from the path of i.Find an upper bound on $\mathbb{E}[X]$

- For any edge e, let $Y_e = #$ routes that pass via e.
- Let $p_i = (e_1, \dots, e_K)$ be the path of packet *i*. Then $K \le n$.
- Then $X \le Y_{e_1} + Y_{e_2} + \dots + Y_{e_K}$.
- By symmetry of the hypercube, $\mathbb{E}[Y_e]$ is the same for all edges.
- By linearity of expectation,

 $\mathbb{E}[X|K = k] \leq \mathbb{E}[Y_{e_1}] + \dots + \mathbb{E}[Y_{e_k}] = k \cdot \mathbb{E}[Y_e]$

- For any edge e, let $Y_e = #$ routes that pass via e.
- Suppose *e* is an edge in dimension $d \in [n]$, that is, $e = (x_1 \dots x_n, x_1 \dots x_{d-1} \overline{x_d} \dots x_n)$
- Only packets with source $* \cdots * x_d \dots x_n$ can traverse *e*
- To traverse *e*, such a packet must have destination which happens with probability
- Thus, $\mathbb{E}[Y_e] =$

Consider any packet *i*. It fails to reach its destination in phase 1 within 3n steps with probability at most $\frac{1}{N^2}$.

Proof: Let X be the number of packets (other than i) that use at leastone edge from the path of i.Find an upper bound on $\mathbb{E}[X]$

- For any edge e, let $Y_e = #$ routes that pass via e.
- Let $p_i = (e_1, \dots, e_K)$ be the path of packet *i*. Then $K \le n$.
- By linearity of expectation, $\mathbb{E}[X|K = k] \leq \mathbb{E}[Y_{e_1}] + \dots + \mathbb{E}[Y_{e_k}] = k \cdot \mathbb{E}[Y_e] =$
- By compact law of total expectation, $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|K]] \le \mathbb{E}[K/2] =$

Consider any packet *i*. It fails to reach its destination in phase 1 within

3n steps with probability at most $\frac{1}{N^2}$.

Proof: Let X be the number of packets (other than i) that use at least one edge from the path of i.

- So far: $\mathbb{E}[X] \le \frac{n}{4}$ and travel time for packet *i* is $\le n + X$
- By Hoeffding bound, $\Pr[X \ge 2n] =$

Consider any packet *i*. It fails to reach its destination in phase 1 within

3n steps with probability at most $\frac{1}{N^2}$.

Using the Main Lemma to complete the analysis:

• By a union bound over *N* packets, the probability that at least one packet fails to reach its destination in phase 1 within 3*n* steps is