LECTURE 11

Last time
- Chernoff Bounds

Today
- Hoeffding Bounds
- Applications of Chernoff-Hoeffding Bounds
 - Estimating a Parameter
 - Set Balancing
 - Routing on the hypercube
Sums of Independent Bounded RVs

Hoeffding Bound

Let X_1, \ldots, X_n be independent random variables with $\Pr[a \leq X_i \leq b] = 1$. Let $X = X_1 + \cdots + X_n$ and $\mu = \mathbb{E}[X]$. Then

- (upper tail) $\Pr[X \geq \mu + \epsilon n] \leq e^{-2n\epsilon^2/(b-a)^2}$
- (lower tail) $\Pr[X \leq \mu - \epsilon n] \leq e^{-2n\epsilon^2/(b-a)^2}$
Application: Estimating a parameter

- **Unknown**: probability p that a feature occurs in the population.
- Obtain an estimate by taking n samples
- $X \sim \text{Bin}(n, p)$
- Let $\hat{p} = X/n$.
- A $1 - \gamma$ confidence interval for parameter p is an interval $[\hat{p} - \epsilon, \hat{p} + \epsilon]$ such that $\Pr[p \in [\hat{p} - \epsilon, \hat{p} + \epsilon]] \geq 1 - \gamma$.
- Find a tradeoff between γ, ϵ and n.
• A $1 - \gamma$ confidence interval for parameter p is an interval $[\hat{p} - \epsilon, \hat{p} + \epsilon]$ such that $\Pr[p \in [\hat{p} - \epsilon, \hat{p} + \epsilon]] \geq 1 - \gamma$.

• Find a tradeoff between γ, ϵ and n.

Solution: $\mathbb{E}[X] = np$

• Suppose $p \not\in [\hat{p} - \epsilon, \hat{p} + \epsilon]$

• Case 1: $p < \hat{p} - \epsilon$. Then $\hat{p} > p + \epsilon$

• Case 2: $p > \hat{p} + \epsilon$. Then $\hat{p} < p - \epsilon$

• $\gamma = 2 \cdot e^{-2\epsilon^2 n}$
Application: Set Balancing

- **Given:** an $n \times m$ matrix A with 0-1 entries
- **Definition:** $||(x_1, \ldots, x_n)||_\infty = \max_{i \in [n]} |x_i|$
- **Find:** $b \in \{-1,1\}^m$ minimizing $||Ab||_\infty$

Partition subjects into two groups, so that each feature is balanced.
Application: Set Balancing

Algorithm: Choose each b_i independently from $\{-1,1\}$.

Theorem. $\Pr\left[\|Ab\|_\infty \geq \sqrt{4m \ln n}\right] \leq 2/n$.

Proof: Let \bar{a}_i be the vector in row i of A for all $i \in [n]$.

- Let B_i be the (bad) event that $\bar{a}_i \cdot b \geq \sqrt{4m \ln n}$.
- For $i \in [n]$, let Z_i be the random variable $\sum_{j \in [m]} a_{ij}b_j$.
- $\mathbb{E}[Z_i] = \quad$ [m independent RVs]
- By Hoeffding,
 \[\Pr[B_i] = \Pr[|Z_i| \geq \epsilon m] \leq 2e^{-\frac{2\epsilon^2 m}{4}} = 2e^{-2 \ln n} \leq 2n^{-2} \]
- By a union bound over all n rows,
 \[\Pr\left[\|Ab\|_\infty \geq \sqrt{4m \ln n}\right] = \Pr\left[\bigcup_{i \in [n]} B_i\right] \]
 $\epsilon m = \sqrt{4m \ln n}$
 \[\epsilon^2 = \frac{4 \ln n}{m} \]
An n-dimensional hypercube is a directed graph with

- $N = 2^n$ nodes, each indexed by n-bit integer
- containing the directed edge (x, y) iff x and y differ in exactly one bit

How many edges?

- **Routing.** Each node is a routing switch.
 Edges = communication channels
 An edge can carry one packet in one step.

- A *routing algorithm* specifies a path from s to t for each pair of nodes (s, t) and a *queuing policy* for ordering packets that are waiting for the same link (e.g., FIFO – First In First Out or FTG – Furthest to Go)
Permutation Routing Problem

• Each node is the source of one packet
• Each node is the designation of one packet
 ➢ E.g., on a complete graph, it can be solved in one time step.
 ➢ On sparse graphs?

Hypercube: N nodes $N\log N$ edges.

Bit-Fixing Routing Algorithm for the Hypercube

1. Let x be the current node and y be the destination of a packet
2. Find smallest $i \in [n]$ such that $x_i \neq y_i$
3. Traverse the edge $(x, x_1 \ldots x_{i-1} \bar{x}_i x_{i+1} \ldots x_n)$

How long does it take to route a packet if there are no delays?
Bad example for congestion

• **Transpose permutation** \((n \text{ is even})\)

 From each \(x\), send a packet to \((x_{n/2+1}, \ldots, x_n, x_1, \ldots, x_{n/2})\)

 Exercise: Show that Bit-Fixing Algorithm takes \(\Omega(\sqrt{N})\) steps on transpose permutation.

• **Known:**

 Any deterministic *oblivious* algorithm on a network with \(N\) nodes, each of outdegree \(d\), takes \(\Omega\left(\sqrt{N/d}\right)\) steps on some permutation.

 Randomization is essential!
Randomized Routing

Randomized Routing Algorithm (RRA)

0. For each packet going from x to y, pick a node z uniformly and independently at random.
1. Use Bit-Fixing to route the packet from x to z.
2. Use Bit-Fixing to route the packet from z to y.

Theorem

For every permutation, RRA takes $O(\log N)$ steps w.p. $1 - O\left(\frac{1}{N}\right)$.

Proof:

Idea 1: Analyze Phase 1. (Phase 2 is ``symmetric”’’ going backwards; first think about waiting with Phase 2 until all packets are done with Phase 1.)

Idea 2: In an intermediate destination, each bit z_i is 0/1 uniformly & independently

Idea 3: # steps in Phase1 is (# bits to fix) + (waiting time in queues in Phase 1)

\[\leq n + \text{delay} \]
Lemma

Let \(p_i \) be the path of some packet \(i \) in Phase 1.
Let \(S \) be the set of packets (other than \(i \)) whose routes pass through at least one edge of \(p_i \). Then the delay of \(i \) is at most \(|S| \).
Main Lemma

Consider any packet i. It fails to reach its destination in phase 1 within $3n$ steps with probability at most $\frac{1}{N^2}$.

Proof: Let X be the number of packets (other than i) that use at least one edge from the path of i.

We would like to find an upper bound on $\mathbb{E}[X]$.

Sofya Raskhodnikova; Randomness in Computing
Analysis of RRA

Main Lemma
Consider any packet \(i \). It fails to reach its destination in phase 1 within \(3n \) steps with probability at most \(\frac{1}{N^2} \).

Proof: Let \(X \) be the number of packets (other than \(i \)) that use at least one edge from the path of \(i \).

- For any edge \(e \), let \(Y_e = \# \) routes that pass via \(e \).
- Let \(p_i = (e_1, \ldots, e_K) \) be the path of packet \(i \). Then \(K \leq n \).
- Then \(X \leq Y_{e_1} + Y_{e_2} + \cdots + Y_{e_K} \).
- By symmetry of the hypercube, \(\mathbb{E}[Y_e] \) is the same for all edges.
- By linearity of expectation,
 \[
 \mathbb{E}[X|K = k] \leq \mathbb{E}[Y_{e_1}] + \cdots + \mathbb{E}[Y_{e_k}] = k \cdot \mathbb{E}[Y_e]
 \]
Calculating $\mathbb{E}[Y_e]$

- For any edge e, let $Y_e = \#$ routes that pass via e.
- Suppose e is an edge in dimension $d \in [n]$, that is, $e = (x_1 \ldots x_n, x_1 \ldots x_{d-1} \overline{x_d} \ldots x_n)$
- Only packets with source $\ast \ldots \ast x_d \ldots x_n$ can traverse e
- To traverse e, such a packet must have designation which happens with probability
- Thus, $\mathbb{E}[Y_e] =$
Analysis of RRA

Main Lemma

Consider any packet i. It fails to reach its destination in phase 1 within $3n$ steps with probability at most $\frac{1}{N^2}$.

Proof: Let X be the number of packets (other than i) that use at least one edge from the path of i.

- For any edge e, let $Y_e = \#$ routes that pass via e.
- Let $p_i = (e_1, ..., e_K)$ be the path of packet i. Then $K \leq n$.
- By linearity of expectation,
 $$\mathbb{E}[X|K = k] \leq \mathbb{E}[Y_{e_1}] + \cdots + \mathbb{E}[Y_{e_k}] = k \cdot \mathbb{E}[Y_e] =$$
- By compact law of total expectation, $\mathbb{E}[X]$
 $$= \mathbb{E}[\mathbb{E}[X|K]] \leq \mathbb{E}[K/2] =$$
Analysis of RRA

Main Lemma

Consider any packet i. It fails to reach its destination in phase 1 within $3n$ steps with probability at most $\frac{1}{N^2}$.

Proof: Let X be the number of packets (other than i) that use at least one edge from the path of i.

- So far: $\mathbb{E}[X] \leq \frac{n}{4}$ and travel time for packet i is $\leq n + X$
- By Chernoff bound, $\Pr[X \geq 2n] =$
Using the Main Lemma to complete the analysis:

• By a union bound over N packets, the probability that at least one packet fails to reach its destination in phase 1 within $3n$ steps is