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“cs
5=7| Sums of Independent Bounded RVs

ﬂloeffding Bound \

Let X, ..., X;, be independent random variables
with Prla < X; < b] = 1.

LetX =X + -+ X,, and u = E|X].

Then for all e > 0,

e (uppertail) Pr[X = u+ en] < e —2ne®/(b-a)*

\e (lower tail) Pr[X < u —en] < e72n€’/(-0)" )/
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Presenter Notes
Presentation Notes
In the future: Possibly mention different bounds  𝑎 𝑖  and  𝑏 𝑖 . Then   𝑏−𝑎  2   gets replaced with  1 𝑛 ∑   𝑏 i − 𝑎 𝑖   2  (so we get  𝑛 2  𝜖 2  in the numerator



%%S} Application: Set Balancing

e Given: an n X m matrix A with 0-1 entries

 Definition: || (x4, ..., ) |lo = max |x;]
l€[n]

« Find: b € {—1,1}" minimizing ||Ab||oo

S /A1 Q1 e Aqm b,
nfeatures | — [ A21 Q22 - U2m b,
Ap1 An2 - Anm bm

NN S

m subjects

Partition subjects into two groups, so that each feature 1s balanced.
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537| Application: Set Balancing

Algorithm: Choose each b; independently from {—1,1}.
Theorem. Pr[ |AbHOo > v4mln n] < 2/n.

Proof: Let a; be the vector in row i of A forall i € [n].

» Let B; be the (bad) event that|a; - b| = V4m Inn.

m independent RVs

* Fori € [n], let Z; be the random variable Y. ;1,1 @i ;.

N
° IE[Z i] — Each is either +1 or -1 w.p. 1/2 (if a;; = 1)
° By Hoeffdlng or always O,ﬁf al-j = O)
, _262m —21lnn -2
Pr[B;] = Pr[|Z;| = em] < 2¢7 4 = Z2e <2n

* By a union bound over all n rows, \ em = Vaminn

m

, 4inn
Pr[||Ab||oo > \/4mlnn] = Pr U B;

€ =
1E[n]
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%%% Application: Routing on Hypercube

An n-dimensional /ypercube 1s a directed graph with
e N = 2" nodes, each indexed by n-bit integer ol 111

\ /

 containing the directed edge (x, y) iff

x and y differ in exactly one bit

x | 001001
y | 011001 001 101

010, >§ 110

How many edges?

=

* Routing. Each node 1s a routing switch. 000 100
For each depicted edge,
there is also the edge in

An edge can carry one packet in one step.  the opposite direction.

* A routing algorithm specifies a path from s to t for each pair of
nodes (s, t) and a queuing policy for ordering packets that are
waiting for the same link (e.g., FIFO — First In First Out or

FTG — Furthest to Go)
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Edges = communication channels



%%Si; Permutation Routing Problem

« Each node 1s the source of one packet

e Each node 1s the destination of one packet

» E.g., on a complete graph, it can be solved in one time step.
» On sparse graphs?
Hypercube: N nodes, Nlog N edges.

d Bit-Fixing Routing Algorithm for the Hypercube h

1. Letx be the current node and y be the destination of a packet
2. Find smallesti € [n] such that x; # y;

\3. Traverse the edge (X, X1 ... X;_1 X Xj11 ... Xp) 4

How long does it take to route a packet if there are no delays?
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%%S} Bad example for congestion

* Transpose permutation (n is even)
From each x, send a packet to (Xy, /241, ey Xy X1 5 vy Xy /2)

Exercise: Show that Bit-Fixing Algorithm takes Q(\/N ) steps on
transpose permutation.

e Known:

Any deterministic oblivious algorithm on a network with N nodes,
each of outdegree d, takes Q(\/ N/ d) steps on some permutation.

Randomization is essential!
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, @‘S Randomized Routing

- Randomized Routing Algorithm (RRA) N

0. For each packet going from x to y, pick a node z
uniformly and independently at random.

1. Use Bit-Fixing to route the packet from x to z.

\2. Use Bit-Fixing to route the packetfromztoy.  /

Theorem logN = n
For every permutation, RRA takes O (log N') stepsw.p. 1 —0 (%)
Proof:

Idea 1: Analyze Phase 1. (Phase 2 is " 'symmetric’’ going backwards; first think
about waiting with Phase 2 until all packets are done with Phase 1.)

Idea 2: In an intermediate destination, each bit z; is 0/1 uniformly & independently

Idea 3: # steps in Phasel is (# bits to fix) + (waiting time in queues in Phase 1)
< n + delay
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;;?, Homework Lemma

" Lemma )
Let p; be the path of some packet i in Phase 1.
Let S be the set of packets (other than i) whose routes pass through at
\_least one edge of p;. Then the delay of i is at most |S]. )
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§;| Analysis of RRA

" Main Lemma A
Consider any packet i. It fails to reach its destination in phase 1 within
: . 1
3n steps with probability at most 7 )

Proof: Let X be the number of packets (other than i) that use at least
one edge from the path of i.

We would like to find an upper bound on E[X].
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%%S} Analysis of RRA

" Main Lemma )

Consider any packet i. It fails to reach its destination in phase 1 within

3n steps with probability at most % )

Proof: Let X be the number of packets (other than i) that use at least
one edge from the path of i. Find an upper bound on E[X]

* For any edge e, let Y, = # routes that pass via e.
* Letp; = (eq, ..., €x) be the path of packet i. Then K < n.
* ThenX <Y, +Y, +:+7Y,.
« By symmetry of the hypercube, E|Y,] is the same for all edges.
By linearity of expectation,
E[X|K = k] <E|Y, | + - +E|Y,, | = k ‘E[Y,]
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%%?; Calculating E|Y,]

« For any edge e, let Y, = # routes that pass via e.

« Suppose e is an edge in dimension d € [n], that is,
€ = (X]{ .. Xy X1 e Xg—1Xg - Xp)
* Only packets with source * --- * x4 ... X,, can traverse e

* To traverse e, such a packet must have destination
which happens with probability

. Thus, E[Y,] =

10/8/2024 Sofya Raskhodnikova, Randomness in Computing



%%S} Analysis of RRA

” Main Lemma A
Consider any packet i. It fails to reach its destination in phase 1 within
: . 1
3n steps with probability at most 7 )

Proof: Let X be the number of packets (other than i) that use at least

one edge from the path of i. Find an upper bound on E[X]

* For any edge e, let Y, = # routes that pass via e.
* Letp; = (eq, ..., €x) be the path of packet i. Then K < n.
* By linearity of expectation,
E[X|K = k] <E[Y,]| + - +E[Y,, | = k ‘E[Y,] =
« By compact law of total expectation, E|[X]|
=E|E[X|K]| < E[K /2] =
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%%S} Analysis of RRA

" Main Lemma A

Consider any packet i. It fails to reach its destination in phase 1 within
: . 1
3n steps with probability at most 7

N

Proof: Let X be the number of packets (other than i) that use at least
one edge from the path of i.

« So far: E[X] < % and travel time for packetiis <n + X
+ By Hoeftding bound, Pr[X > 2n] =

)

10/8/2024 Sofya Raskhodnikova; Randomness in Computing



%%S} Analysis of RRA

" Main Lemma A

Consider any packet i. It fails to reach its destination in phase 1 within

: . 1
\Sn steps with probability at most 7

Using the Main Lemma to complete the analysis:

)

* By a union bound over N packets, the probability that at least one
packet fails to reach its destination in phase 1 within 37 steps 1s
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