

Randomness in Computing

LECTURE 12 Last time

- Hoeffding Bound
- Applications of Chernoff-Hoeffding Bounds
- Estimating a parameter
- Set Balancing
- Routing on the hypercube **Today**
- Analysis of routing on the hypercube
- The Balls-and-Bins model

Sofya Raskhodnikova; Randomness in Computing

Application: Routing on Hypercube

An *n*-dimensional *hypercube* is a directed graph with

- $N = 2^n$ nodes, each indexed by *n*-bit integer
- containing the directed edge (x, y) iff
 x and y differ in exactly one bit _____

x 001001 y 011001

How many edges?

Routing. Each node is a routing switch.
 Edges = communication channels
 An edge can carry one packet in one step.

A *routing algorithm* specifies a path from *s* to *t* for each pair of noes (*s*, *t*) and a *queuing policy* for ordering packets that are waiting for the same link (e.g., FIFO – First In First Out or FTG – Furthest to Go)

001 101 000 100 For each depicted edge,

110

011

010

111

there is also the edge in the opposite direction.

CS 537 Permutation Routing Problem

- Each node is the source of one packet
- Each node is the destination of one packet
- > E.g., on a complete graph, it can be solved in one time step.
- > On sparse graphs?

Hypercube: N nodes Nlog N edges.

Bit-Fixing Routing Algorithm for the Hypercube

- 1. Let *x* be the current node and *y* be the destination of a packet
- 2. Find smallest $i \in [n]$ such that $x_i \neq y_i$
- 3. Traverse the edge $(x, x_1 \dots x_{i-1} \overline{x_i} x_{i+1} \dots x_n)$

How long does it take to route a packet if there are no delays?

Sofya Raskhodnikova; Randomness in Computing

Randomized Routing Algorithm (RRA)

- 0. For each packet going from x to y, pick a node z uniformly and independently at random.
- 1. Use Bit-Fixing to route the packet from x to z.
- 2. Use Bit-Fixing to route the packet from z to y.

Proof:

Idea 1: Analyze Phase 1. (Phase 2 is ``symmetric'' going backwards; first think about waiting with Phase 2 until all packets are done with Phase 1.)

Idea 2: In an intermediate destination, each bit z_i is 0/1 uniformly & independently

Idea 3: # steps in Phase1 is (# bits to fix) + (waiting time in queues in Phase 1)

 \leq *n* + delay

Lemma

Let p_i be the path of some packet *i* in Phase 1.

Let S be the set of packets (other than i) whose routes pass through at least one edge of p_i . Then the delay of i is at most |S|.

Consider any packet *i*. It fails to reach its destination in phase 1 within 3n steps with probability at most $\frac{1}{N^2}$.

Proof: Let *X* be the number of packets (other than *i*) that use at least one edge from the path of *i*.

We would like to find an upper bound on $\mathbb{E}[X]$.

Sofya Raskhodnikova; Randomness in Computing

Consider any packet *i*. It fails to reach its destination in phase 1 within 3n steps with probability at most $\frac{1}{N^2}$.

Proof: Let X be the number of packets (other than i) that use at leastone edge from the path of i.Find an upper bound on $\mathbb{E}[X]$

- For any edge e, let $Y_e = #$ routes that pass via e.
- Let $p_i = (e_1, \dots, e_K)$ be the path of packet *i*. Then $K \le n$.
- Then $X \le Y_{e_1} + Y_{e_2} + \dots + Y_{e_K}$.
- By symmetry of the hypercube, $\mathbb{E}[Y_e]$ is the same for all edges.
- By linearity of expectation,

 $\mathbb{E}[X|K = k] \leq \mathbb{E}[Y_{e_1}] + \dots + \mathbb{E}[Y_{e_k}] = k \cdot \mathbb{E}[Y_e]$

- For any edge e, let $Y_e = #$ routes that pass via e.
- Suppose *e* is an edge in dimension $d \in [n]$, that is, $e = (x_1 \dots x_n, x_1 \dots x_{d-1} \overline{x_d} \dots x_n)$
- Only packets with source $* \cdots * x_d \dots x_n$ can traverse *e*
- To traverse *e*, such a packet must have destination which happens with probability
- Thus, $\mathbb{E}[Y_e] =$

Consider any packet *i*. It fails to reach its destination in phase 1 within 3n steps with probability at most $\frac{1}{N^2}$.

Proof: Let X be the number of packets (other than i) that use at leastone edge from the path of i.Find an upper bound on $\mathbb{E}[X]$

- For any edge e, let $Y_e = #$ routes that pass via e.
- Let $p_i = (e_1, \dots, e_K)$ be the path of packet *i*. Then $K \le n$.
- By linearity of expectation, $\mathbb{E}[X|K = k] \leq \mathbb{E}[Y_{e_1}] + \dots + \mathbb{E}[Y_{e_k}] = k \cdot \mathbb{E}[Y_e] =$
- By compact law of total expectation, $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|K]] \le \mathbb{E}[K/2] =$

Consider any packet *i*. It fails to reach its destination in phase 1 within

3n steps with probability at most $\frac{1}{N^2}$.

Proof: Let X be the number of packets (other than i) that use at least one edge from the path of i.

- So far: $\mathbb{E}[X] \le \frac{n}{4}$ and travel time for packet *i* is $\le n + X$
- By Chernoff bound, $\Pr[X \ge 2n] =$

Consider any packet *i*. It fails to reach its destination in phase 1 within

3n steps with probability at most $\frac{1}{N^2}$.

Using the Main Lemma to complete the analysis:

• By a union bound over *N* packets, the probability that at least one packet fails to reach its destination in phase 1 within 3*n* steps is

CS 537 The Balls-and-Bins Model

• *m* balls thrown into *n* bins Each ball falls into a uniformly random bin (u.i.r.)

Q1. Is it more likely that there is a collision or not? (Birthday Paradox)

- Q2. How many balls are in the fullest bin? (Maximum load)
- Q3. How many bins are empty?
- Q4. What does the distribution of the balls in the bins look like?

- n = 365 bins (days)
- What is the probability that all *m* people have different birthdays?
- For which m is the probability of collision more than 1/2?

Let E_i for $i \in [m]$ be the event that ball *i* falls into an empty bin. Pr[no collision]

- Given: *n* integers from range [*r*].
- If $r \le n$, we can sort in O(n) time
 - Use possible values as buckets
 - Keep a linked list for each bucket.

- Make a pass over the list and put each element in the right bucket
- Concatenate the lists.
- What if r > n? (Suppose for simplicity that n divides r.)

Theorem

If n integers are chosen u.i.r. from range [r],

they can be sorted in expected time O(n).

• Expectation is over randomness in choice of integers: Bucket Sort is deterministic.

• Idea: Break the range [r] into n buckets.

The expected # of elements in each bucket is 1.

We can easily sort all buckets (say, using Insertion Sort)

Algorithm. Input: integers a_1, \dots, a_n

- 1. Make linked lists for buckets B_1, \ldots, B_n .
- 2. For each $i \in [n]$, let $j = \left\lfloor \frac{a_i \cdot n}{r} \right\rfloor$ and add a_i to B_j .

3. Sort all buckets using Insertion Sort.

4. Output the concatenation of B_1, \ldots, B_n

• Steps 1,2, and 4 can be implemented to run in O(n) time.

Lemma

Step 3 runs in expected time O(n).

Lemma

Step 3 (sorting the buckets) runs in expected time O(n).

Proof: Buckets are bins, elements are balls.

- Let $X_j = #$ of elements that land in bucket B_j , for $j \in [n]$.
- Time to sort B_j is: $\leq c \cdot X_j^2$ for some constant c
- Expected run time of Step 3: by linearity of expectation by symmetry $\leq \mathbb{E}\left[\sum_{j\in[n]} cX_j^2\right] \stackrel{\text{by linearity of expectation}}{=} c \cdot \sum_{j\in[n]} \mathbb{E}[X_j^2] \stackrel{\text{cn}}{=} cn \cdot \mathbb{E}[X_1^2]$

Lemma

Step 3 (sorting the buckets) runs in expected time O(n).

Proof: Buckets are bins, elements are balls in Balls-in-the-Bins.

- Let RV $X_j = #$ of elements that land in bucket B_j , for $j \in [n]$
- Expected run time of Step 3: $\leq cn \cdot \mathbb{E}[X_1^2]$
- X₁ ~

• Given: *n* integers from range [*r*].

Theorem

If *n* integers are chosen uniformly and independently from range $\{1, ..., r\}$, they can be sorted in expected time O(n).