Randomness in Computing

Lecture 12

Last time

- Hoeffding Bound
- Applications of ChernoffHoeffding Bounds
- Estimating a parameter
- Set Balancing
- Routing on the hypercube Today
- Analysis of routing on the hypercube
- The Balls-and-Bins model

Application: Routing on Hypercube

An n-dimensional hypercube is a directed graph with

- $N=2^{n}$ nodes, each indexed by n-bit integer
- containing the directed edge (x, y) iff x and y differ in exactly one bit

x	001001
	011001

How many edges?

- Routing. Each node is a routing switch. Edges $=$ communication channels An edge can carry one packet in one step.

For each depicted edge, there is also the edge in the opposite direction.

- A routing algorithm specifies a path from s to t for each pair of noes (s, t) and a queuing policy for ordering packets that are waiting for the same link (e.g., FIFO - First In First Out or

FTG - Furthest to Go)

Permutation Routing Problem

- Each node is the source of one packet
- Each node is the destination of one packet
$>$ E.g., on a complete graph, it can be solved in one time step.
$>$ On sparse graphs?
Hypercube: N nodes $N \log N$ edges.

Bit-Fixing Routing Algorithm for the Hypercube

1. Let x be the current node and y be the destination of a packet
2. Find smallest $i \in[n]$ such that $x_{i} \neq y_{i}$
3. Traverse the edge $\left(x, x_{1} \ldots x_{i-1} \overline{x_{i}} x_{i+1} \ldots x_{n}\right)$

How long does it take to route a packet if there are no delays?

Randomized Routing

Randomized Routing Algorithm (RRA)

0 . For each packet going from x to y, pick a node z uniformly and independently at random.

1. Use Bit-Fixing to route the packet from x to z.
2. Use Bit-Fixing to route the packet from z to y.

Theorem

$$
\log N=\boldsymbol{n}
$$

For every permutation, RRA takes $O(\log N)$ steps w.p. $1-O\left(\frac{1}{N}\right)$.

Proof:

Idea 1: Analyze Phase 1. (Phase 2 is ‘’symmetric'" going backwards; first think about waiting with Phase 2 until all packets are done with Phase 1.)
Idea 2: In an intermediate destination, each bit z_{i} is $0 / 1$ uniformly \& independently
Idea 3: \# steps in Phase1 is (\# bits to fix) + (waiting time in queues in Phase 1)

$$
\leq n \quad+\text { delay }
$$

Homework Lemma

Lemma

Let p_{i} be the path of some packet i in Phase 1.
Let S be the set of packets (other than i) whose routes pass through at least one edge of p_{i}. Then the delay of i is at most $|S|$.

Analysis of RRA

Main Lemma

Consider any packet i. It fails to reach its destination in phase 1 within $3 n$ steps with probability at most $\frac{1}{N^{2}}$.
Proof: Let X be the number of packets (other than i) that use at least one edge from the path of i.

We would like to find an upper bound on $\mathbb{E}[X]$.

Analysis of RRA

Main Lemma

Consider any packet i. It fails to reach its destination in phase 1 within $3 n$ steps with probability at most $\frac{1}{N^{2}}$.
Proof: Let X be the number of packets (other than i) that use at least one edge from the path of i.

Find an upper bound on $\mathbb{E}[X]$

- For any edge e, let $Y_{e}=\#$ routes that pass via e.
- Let $p_{i}=\left(e_{1}, \ldots, e_{K}\right)$ be the path of packet i. Then $K \leq n$.
- Then $X \leq Y_{e_{1}}+Y_{e_{2}}+\cdots+Y_{e_{K}}$.
- By symmetry of the hypercube, $\mathbb{E}\left[Y_{e}\right]$ is the same for all edges.
- By linearity of expectation,

$$
\mathbb{E}[X \mid K=k] \leq \mathbb{E}\left[Y_{e_{1}}\right]+\cdots+\mathbb{E}\left[Y_{e_{k}}\right]=k \cdot \mathbb{E}\left[Y_{e}\right]
$$

Calculating $\mathbb{E}\left[Y_{e}\right]$

- For any edge e, let $Y_{e}=\#$ routes that pass via e.
- Suppose e is an edge in dimension $d \in[n]$, that is, $e=\left(x_{1} \ldots x_{n}, x_{1} \ldots x_{d-1} \overline{x_{d}} \ldots x_{n}\right)$
- Only packets with source $* \cdots * x_{d} \ldots x_{n}$ can traverse e
- To traverse e, such a packet must have destination which happens with probability
- Thus, $\mathbb{E}\left[Y_{e}\right]=$

Analysis of RRA

Main Lemma

Consider any packet i. It fails to reach its destination in phase 1 within $3 n$ steps with probability at most $\frac{1}{N^{2}}$.
Proof: Let X be the number of packets (other than i) that use at least one edge from the path of i.

Find an upper bound on $\mathbb{E}[X]$

- For any edge e, let $Y_{e}=\#$ routes that pass via e.
- Let $p_{i}=\left(e_{1}, \ldots, e_{K}\right)$ be the path of packet i. Then $K \leq n$.
- By linearity of expectation,

$$
\mathbb{E}[X \mid K=k] \leq \mathbb{E}\left[Y_{e_{1}}\right]+\cdots+\mathbb{E}\left[Y_{e_{k}}\right]=k \cdot \mathbb{E}\left[Y_{e}\right]=
$$

- By compact law of total expectation, $\mathbb{E}[X]$

$$
=\mathbb{E}[\mathbb{E}[X \mid K]] \leq \mathbb{E}[K / 2]=
$$

Analysis of RRA

Main Lemma

Consider any packet i. It fails to reach its destination in phase 1 within $3 n$ steps with probability at most $\frac{1}{N^{2}}$.
Proof: Let X be the number of packets (other than i) that use at least one edge from the path of i.

- So far: $\mathbb{E}[X] \leq \frac{n}{4}$ and travel time for packet i is $\leq n+X$
- By Chernoff bound, $\operatorname{Pr}[X \geq 2 n]=$

Analysis of RRA

Main Lemma

Consider any packet i. It fails to reach its destination in phase 1 within $3 n$ steps with probability at most $\frac{1}{N^{2}}$.
Using the Main Lemma to complete the analysis:

- By a union bound over N packets, the probability that at least one packet fails to reach its destination in phase 1 within $3 n$ steps is

The Balls-and-Bins Model

- $\quad m$ balls thrown into n bins

Each ball falls into a uniformly random bin (u.i.r.)

Q1. Is it more likely that there is a collision or not?

(Birthday Paradox)

Q2. How many balls are in the fullest bin? (Maximum load)
Q3. How many bins are empty?
Q4. What does the distribution of the balls in the bins look like?

Birthday Paradox

- $n=365$ bins (days)
- What is the probability that all m people have different birthdays?
- For which m is the probability of collision more than $1 / 2$?

Let E_{i} for $i \in[m]$ be the event that ball i falls into an empty bin. $\operatorname{Pr}[$ no collision]

Bucket Sort

- Given: n integers from range $[r]$.
- If $r \leq n$, we can sort in $O(n)$ time
- Use possible values as buckets
- Keep a linked list for each bucket.

- Make a pass over the list and put each element in the right bucket
- Concatenate the lists.
- What if $r>n$? (Suppose for simplicity that n divides r.)

> Theorem
> If n integers are chosen u.i.r. from range $[r]$, they can be sorted in expected time $O(n)$.

- Expectation is over randomness in choice of integers: Bucket Sort is deterministic.

Bucket Sort

- Idea: Break the range $[r]$ into n buckets.

The expected \# of elements in each bucket is 1 .

We can easily sort all buckets (say, using Insertion Sort)
Algorithm. Input: integers a_{1}, \ldots, a_{n}

1. Make linked lists for buckets B_{1}, \ldots, B_{n}.
2. For each $i \in[n]$, let $j=\left\lceil\frac{a_{i} \cdot n}{r}\right\rceil$ and add a_{i} to B_{j}.
3. Sort all buckets using Insertion Sort.
4. Output the concatenation of B_{1}, \ldots, B_{n}

- Steps 1,2 , and 4 can be implemented to run in $O(n)$ time.

Lemma

Step 3 runs in expected time $O(n)$.

Bucket Sort: Analysis

Lemma

Step 3 (sorting the buckets) runs in expected time $O(n)$.
Proof: Buckets are bins, elements are balls.

- Let $X_{j}=\#$ of elements that land in bucket B_{j}, for $j \in[n]$.
- Time to sort B_{j} is: $\leq c \cdot X_{j}^{2}$ for some constant c
- Expected run time of Step 3: by linearity of expectation by symmetry

$$
\leq \mathbb{E}\left[\sum_{j \in[n]} c X_{j}^{2}\right]=c \cdot \sum_{j \in[n]} \mathbb{E}\left[X_{j}^{2}\right]=c n \cdot \mathbb{E}\left[X_{1}^{2}\right]
$$

Bucket Sort: Analysis

Lemma

Step 3 (sorting the buckets) runs in expected time $O(n)$.
Proof: Buckets are bins, elements are balls in Balls-in-the-Bins.

- Let $\mathrm{RV} X_{j}=\#$ of elements that land in bucket B_{j}, for $j \in[n]$
- Expected run time of Step 3: $\leq c n \cdot \mathbb{E}\left[X_{1}^{2}\right]$
- $X_{1} \sim$

Bucket Sort: Conclusion

- Given: n integers from range $[r]$.

Theorem

If n integers are chosen uniformly and independently from range $\{1, \ldots, r\}$, they can be sorted in expected time $O(n)$.

