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Randomness in Computing

LECTURE 13
Last time
• Finished routing on hypercube

• Balls-and-Bins model

• Birthday Paradox

• Application: Bucket Sort

Today
• Poisson distribution

• Poisson approximation
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𝒎 balls into 𝒏 bins

• The probability that bin 1 is empty is 
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Balls and Bins in the Limit

𝒆−𝒙(𝟏 − 𝒙𝟐) ≤ 𝟏 − 𝒙 ≤ 𝒆−𝒙

for |𝒙| ≤ 𝟏

• The probability 𝑝𝑘 that bin 1 has 𝑘 balls is 
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Poisson random variables

• A Poisson random variable with parameter 𝜇 is given 

by the following distribution on 𝑗 = 0,1,2, …

Pr 𝑋 = 𝑗 =
𝑒−𝜇𝜇𝑗

𝑗!

• Check that probabilities sum to 1:

σ𝑗=0
∞ Pr 𝑋 = 𝑗 =σ𝑗=0

∞ 𝑒−𝜇𝜇𝑗

𝑗!
=

• The expectation of a Poisson R.V. 𝑋 is

𝔼 𝑋 =

var 𝑋 = 𝜇 (See Ex. 5.5)

Taylor expansion: 𝒆𝒙 = σ𝒋=𝟎
∞ 𝒙𝒋

𝒋!



Independent Poisson RVs
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Theorem
Let 𝑋 and 𝑌 be independent Poisson RVs with means 𝜇𝑋 and 𝜇𝑌 .

Then 𝑋 + 𝑌 is a Poisson RV with mean 𝜇𝑋 + 𝜇𝑌 .



Chernoff Bounds for Poisson RVs

Theorem. Let 𝑋 be a Poisson RV with mean 𝜇.

• (upper tail, additive) If 𝑥 > 𝜇, then

Pr 𝑋 ≥ 𝑥 ≤
𝑒−𝜇 𝑒𝜇 𝑥

𝑥𝑥
.

• (lower tail, additive) If 𝑥 < 𝜇, then

Pr 𝑋 ≤ 𝑥 ≤
𝑒−𝜇 𝑒𝜇 𝑥

𝑥𝑥
.

• (upper tail, multiplicative) For any 𝛿 > 0,

Pr 𝑋 ≥ 1 + 𝛿 𝜇 ≤
𝑒𝛿

1 + 𝛿 1+𝛿

𝜇

.

• (lower tail, multiplicative) For any 𝛿 ∈ (0,1),

Pr 𝑋 ≤ 1 − 𝛿 𝜇 ≤
𝑒−𝛿

1 − 𝛿 1−𝛿

𝜇

.
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Poisson Distribution is Limit of Binomial 
Distribution

• Applies to balls-and-bins if 𝑚 = 𝑛𝑐.
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Theorem
Let 𝑋𝑛 ∼ Bin 𝑛, 𝑝 , where 𝑝 is a function of 𝑛 and     lim

𝑛→∞
𝑛𝑝 = 𝜇,

a constant independent of 𝑛.

Then, for all fixed 𝑘, 

lim
𝑛→∞

Pr[𝑋𝑛 = 𝑘] =
𝑒−𝜇𝜇𝑘

𝑘!
.



The Poisson Approximation

• The Balls-and-Bins model has dependences.

• E.g. if Bin 1 is empty, then Bin 2 is less likely to be 

empty.

• The Poisson Approximation gets rid of dependencies.
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Poisson approximation

• The Balls-and-Bins model has dependences.

• The Poisson approximation gets rid of dependencies.

• 𝑚 balls into 𝑛 bins u.i.r. 

For 𝑖 ∈ 𝑛 , let 

(real world) 𝑋𝑖
(𝑚)

= # of balls in bin 𝑖

(Poisson world)   𝑌𝑖
(𝑚)

∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇), where 𝜇 =
𝑚

𝑛
and

𝑌𝑖
(𝑚)

are mutually independent.

• If we condition the Poisson distribution on producing exactly 𝑘 balls, then 

it’s the same as the distribution resulting from throwing 𝑘 balls into 𝑛 bins.
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1          2        3                     …                   𝑛

1    2   3    4    5       …       𝑚-1   𝑚



Poisson Distribution Conditioned on 
getting 𝑘 balls
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Poisson Distribution Theorem

The distribution of 𝑌1
𝑚
, … , 𝑌𝑛

𝑚
conditioned on σ𝑖∈ 𝑛 𝑌𝑖

(𝑚)
= 𝑘

is the same as 𝑋1
𝑘
, … , 𝑋𝑛

𝑘
, regardless of the value of 𝑚.

Real world

Poisson world

Proof: Consider any 𝑘1, … , 𝑘𝑛 satisfying σ𝑖∈ 𝑛 𝑘𝑖 = 𝑘

• Pr 𝑋1
𝑘
, … , 𝑋𝑛

𝑘
= 𝑘1, … , 𝑘𝑛 is

𝑘
𝑘1, … , 𝑘𝑛

𝑛𝑘
=

𝑘!

𝑘1! 𝑘2!⋯𝑘𝑛!
⋅
1

𝑛𝑘

Multinomial 
coefficient



Poisson Distribution Conditioned on 
getting 𝑘 balls
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Poisson Distribution Theorem

The distribution of 𝑌1
𝑚
, … , 𝑌𝑛

𝑚
conditioned on σ𝑖∈ 𝑛 𝑌𝑖

(𝑚)
= 𝑘

is the same as 𝑋1
𝑘
, … , 𝑋𝑛

𝑘
, regardless of the value of 𝑚.

Real world

Poisson world

Proof: Consider any 𝑘1, … , 𝑘𝑛 satisfying σ𝑖∈ 𝑛 𝑘𝑖 = 𝑘

• Pr 𝑋1
𝑘
, … , 𝑋𝑛

𝑘
= 𝑘1, … , 𝑘𝑛 is

• Pr 𝑌1
𝑚
, … , 𝑌𝑛

𝑚
= 𝑘1, … , 𝑘𝑛 | σ𝑖∈ 𝑛 𝑌𝑖

(𝑚)
= 𝑘 is

𝑘!

𝑘1! 𝑘2!⋯𝑘𝑛!
⋅
1

𝑛𝑘

Pr 𝑌1
𝑚

= 𝑘1 ∩⋯∩ 𝑌𝑛
𝑚

= 𝑘𝑛

Pr σ𝑖∈ 𝑛 𝑌𝑖
(𝑚)

= 𝑘
Poisson RV

=
ς𝑖∈ 𝑛

𝑒−𝑚 𝑚𝑘

𝑘!



Approximating a function
of the loads of the bins

• Fact 𝑆𝑡𝑖𝑟𝑙𝑖𝑛𝑔′𝑠 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 : 𝑛! ∼ 2𝜋𝑛
𝑛

𝑒

𝑛

• Bounds for all 𝑛 ∈ ℕ: 2𝜋 𝑛
𝑛

𝑒

𝑛
≤ 𝑛! ≤ 𝑒 𝑛

𝑛

𝑒

𝑛
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Poisson Approximation Theorem
Let 𝑓 𝑥1, … , 𝑥𝑛 ≥ 0 for all 𝑥1, … , 𝑥𝑛 ∈ 0,1,2, … . Then    

𝔼 𝑓 𝑋1
𝑚
, … , 𝑋𝑛

𝑚
≤ 𝒆 𝒎 ⋅ 𝔼 𝑓 𝑌1

𝑚
, … , 𝑌𝑛

𝑚
.

exact case Poisson case



Approximating a function
of the loads of the bins

Proof: 𝔼 𝑓 𝑌1
𝑚
, … , 𝑌𝑛

𝑚

= ෍

𝑘=0

∞

𝔼 𝑓 𝑌1
𝑚
, … , 𝑌𝑛

𝑚
| ෍

𝑖∈[𝑛]

𝑌𝑖
(𝑚)

= 𝑘 ⋅ Pr ෍

𝑖∈ 𝑛

𝑌𝑖
𝑚

= 𝑘

≥ 𝔼 𝑓 𝑌1
𝑚
, … , 𝑌𝑛

𝑚
| ෍

𝑖∈ 𝑛

𝑌𝑖
𝑚

= 𝑚 ⋅ Pr ෍

𝑖∈ 𝑛

𝑌𝑖
𝑚

= 𝑚

= 𝔼 𝑓 𝑋1
𝑚
, … , 𝑋𝑛

𝑚
⋅ Pr 𝑌 = 𝑚
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Poisson Approximation Theorem

Let 𝑓 𝑥1, … , 𝑥𝑛 ≥ 0 for all 𝑥1, … , 𝑥𝑛 ∈ 0,1,2,… . Then    

𝔼 𝑓 𝑋1
𝑚
, … , 𝑋𝑛

𝑚
≤ 𝒆 𝒎 ⋅ 𝔼 𝑓 𝑌1

𝑚
, … , 𝑌𝑛

𝑚
.

Law of Total 
Expectation

Poisson case



Approximating a function
of the loads of the bins

• Poisson case: # of balls in each bin is independent Poisson
𝑚

𝑛

• Corollary. Any event that has probability 𝑝 in the Poisson case         

has probability ≤ 𝑝 ⋅ 𝒆 𝒎 in the exact case.

Proof: Let 𝑋 be the indicator for that event.

Then 𝔼[X] is the probability that event occurs. 

• Improvements to Theorem and Corollary                                     

If 𝔼 𝑓 𝑋1
𝑚
, … , 𝑋𝑛

𝑚
is monotonically nonincreasing

(or nondecreasing) in 𝑚, then 𝒆 𝒎 can be changed to 2.
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Poisson Approximation Theorem

Let 𝑓 𝑥1, … , 𝑥𝑛 ≥ 0 for all 𝑥1, … , 𝑥𝑛 ∈ 0,1,2,… . Then    

𝔼 𝑓 𝑋1
𝑚
, … , 𝑋𝑛

𝑚
≤ 𝒆 𝒎 ⋅ 𝔼 𝑓 𝑌1

𝑚
, … , 𝑌𝑛

𝑚
.



𝒏 balls into 𝒏 bins

• Before (by Chernoff): Pr 𝑀𝑎𝑥𝐿𝑜𝑎𝑑 >
3 ln 𝑛

ln ln 𝑛
≤

1

𝑛
for s.l. 𝑛

• Theorem. Pr 𝑀𝑎𝑥𝐿𝑜𝑎𝑑 <
ln 𝑛

ln ln 𝑛
≤

1

𝑛
for s.l. 𝑛

Proof: Let 𝑀 =
ln 𝑛

ln ln 𝑛
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Application: Max Load

sufficiently large


