

Randomness in Computing

LECTURE 17 Last time before review

- Review Poisson approximation
- Application: max load
- Application: Coupon Collector
- Random graphs

Today

• Finding Hamiltonian cycles in random graphs

A Hamiltonian cycle is a cycle that visits each vertex exactly once.

• Finding Hamiltonian cycles is NP-hard.

The property of having a Hamiltonian cycle is

- A. Monotone increasing
- B. Monotone decreasing
- C. Not monotone

CS Finding Hamiltonian cycles537 in random graphs

Main Theorem

Suppose $p \ge \frac{40 \ln n}{n}$. There is a polynomial time randomized algorithm that, given p and $G \sim G_{n,p}$, finds a Hamiltonian cycle in G with probability $1 - O\left(\frac{1}{n}\right)$.

Corollary: Hamiltonian cycle exists in $G \sim G_{n,p}$ w. p. $1 - O\left(\frac{1}{n}\right)$.

• Current simple path *P* is v_1, v_2, \dots, v_k

• Rotation of *P* with an edge (v_k, v_i) in $G, i \in [k-1]$

- If i = k 1, no change.
- If k = n and i = 1, rotation edge (v_k, v_i) closes Hamiltonian path.

Sofya Raskhodnikova; Randomness in Computing

CS 537

Hamiltonian cycle algorithm

Input: undirected *n*-node graph G = (V, E) represented with adjacency lists **Output**: Hamiltonian cycle or FAIL

For each node v, keep used-edge list UE(v) and unused-edge list UUE(v) to keep track which edges have been used in rotations while v was the head.

- 0. $\forall v \text{ initialize } UE(v) = \emptyset \text{ and } UUE(v) = adjacency list of v$
- 1. Start with a uniformly random $v_1 \in V$ as head.
- 2. Repeat until a rotation edge closes Hamiltonian path or UUE(head) = \emptyset .
 - a. Let $P = (v_1, ..., v_k)$ denote the current path with head v_k
 - **b.** Execute (i), (ii), (iii) w.p. $\frac{1}{n}$, $\frac{|UE(v_k)|}{n}$, $1 \frac{1}{n} \frac{|UE(v_k)|}{n}$, respectively.
 - i. Reverse P and make v_1 head.
 - ii. Rotate *P* with a uniformly random edge *e* from $UE(v_k)$.
 - iii. Let (v_k, u) be the first edge on UUE (v_k) . If $u \neq v_i$ for $i \in [k]$, extend *P* to v_1, \dots, v_{k+1} . O.w., rotate *P* with (v_k, u) .
 - c. Update UE and UUE lists.
 - Return Hamiltonian cycle if found; FAIL o.w.

3.

- Simplifying assumption: For all v ∈ V, list UUE(v) is initialized to contain edges (v, u)∀u ≠ v independently w.p. q
 These edges are in a uniformly random order.
- Caution: (u, v) could be in UUE(u), but not in UUE(v)

Lemma (Head is chosen uniformly at random at every iteration) Let V_t be a R.V. representing the head vertex at iteration t. If algorithm has not terminated at iteration t + 1, then $\Pr[V_{t+1} = u | V_t = u_t, ..., V_1 = u_1] = 1/n \quad \forall u, u_t, ..., u_1$

Lemma (Head is chosen uniformly at random from V at every iteration)

Let V_t be head vertex at iteration t.

If algorithm has not terminated at iteration t + 1, then $\Pr[V_{t+1} = u | V_t = u_t, ..., V_1 = u_1] = 1/n \quad \forall u, u_t, ..., u_1$

Proof: Lemma holds for V_1 . Now suppose the path P is $(v_1, ..., v_k)$

Sofya Raskhodnikova; Randomness in Computing

Initial analysis (continued)

Lemma (Head is chosen uniformly at random from V at every iteration)

Let V_t be head vertex at iteration t.

If algorithm has not terminated at iteration t + 1, then $\Pr[V_{t+1} = u | V_t = u_t, ..., V_1 = u_1] = 1/n \quad \forall u, u_t, ..., u_1$

Proof: Remains to prove: every vertex in $V - \{v_k\}$ is chosen to be U w. p. 1/n• If $(v_k, u) \in UE(v_k)$, then $\Pr[U = u] = \frac{|UE(v_k)|}{n} \cdot \frac{1}{|UE(v_k)|} = \frac{1}{n}$

• If not, apply Principle of Deferred decisions: $\Pr[U = u] = \left(1 - \frac{1}{n} - \frac{|UE(v_k)|}{n}\right) \cdot \frac{1}{n - 1 - |UE(v_k)|} = \frac{1}{n}$

Sofya Raskhodnikova; Randomness in Computing

• What is the probability that we extend the path?

• What problem does it remind you of?

Sofya Raskhodnikova; Randomness in Computing

Main Theorem (with simplifying assumption)

Suppose $q \ge \frac{20 \ln n}{n}$. Then our algorithm finds a Hamiltonian cycle in $O(n \log n)$ iterations with probability $1 - O\left(\frac{1}{n}\right)$.

Proof: For algorithm to fail one of the following events must occur

- $E_1 = \text{no UUE list became empty, but not done after } 3n \ln n \text{ iterations.}$
- E_2 = at least one UUE list became empty during first $3n \ln n$ iterations. $2n \ln n$ iterations for getting a Hamiltonian path

 $n \ln n$ iterations for closing a Hamiltonian path

• Pr[any specific coupon (node) is not collected in $2n \ln n$ iterations] =

• Pr[don't close a Hamiltonian path in *n* ln *n* iterations]=

Main Theorem (with simplifying assumption)

Suppose $q \ge \frac{20 \ln n}{n}$. Then our algorithm finds a Hamiltonian cycle in $O(n \log n)$ iterations with probability $1 - O\left(\frac{1}{n}\right)$.

Proof: For algorithm to fail one of the following events must occur

- $E_1 = \text{no UUE list became empty, but not done after } 3n \ln n \text{ iterations.}$
- E_2 = at least one UUE list became empty during first $3n \ln n$ iterations.
 - E_{2a} = at least 9 ln *n* edges were removed from UUE(v) for some $v \in V$ in the first $3n \ln n$ iterations.
 - E_{2b} = initially, $|UUE(v)| < 9 \ln n$ for some $v \in V$

Main Theorem (with simplifying assumption)

Suppose $q \ge \frac{20 \ln n}{n}$. Then our algorithm finds a Hamiltonian cycle in $O(n \log n)$ iterations with probability $1 - O\left(\frac{1}{n}\right)$.

Proof: E_{2b} = initially, $|UUE(v)| < 9 \ln n$ for some $v \in V$

CS S37 Removing the assumption

Main Theorem

Suppose $p \ge \frac{40 \ln n}{n}$. Then our algorithm *(with appropriately initialized UUE lists)* finds a Hamiltonian cycle in a graph chosen from $G_{n,p}$ in $O(n \log n)$ iterations with probability $1 - O\left(\frac{1}{n}\right)$.

Proof: Select q such that $p = 2q - q^2$. Let $G \leftarrow G_{n,p}$.

For each edge (u, v) of G:

- Put v in UUE(u), but not u in UUE(v)
- vice versa
- Put v in UUE(u) and u in UUE(v)

Randomize the order.