Randomness in Computing

L ECTURE 17/

Last time before review

* Review Poisson approximation
 Application: max load
 Application: Coupon Collector
» Random graphs

Today
* Finding Hamiltonian cycles In

random graphs
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say| Finding Hamiltonian cycles

A Hamiltonian cycle is a cycle that visits each vertex exactly once.

Input graph Hamiltonian cycle

« Finding Hamiltonian cycles is NP-hard.
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L | Question

The property of having a Hamiltonian cycle is
A. Monotone increasing

B. Monotone decreasing

C. Not monotone
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m Finding Hamiltonian cycles

/Main Theorem A
Suppose p = 401%. There is a polynomial time randomized algorithm that,
\glven p and G ~ Gy, finds a Hamiltonian cycle in G with probability 1 — 0 (;)'/

Corollary: Hamiltonian cycle exists in G ~ G, , W.p. 1 — 0 (%)
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 Rotation of P with an edge (v, v;) ING, i € [k — 1]

—6 —6 U\Q

new head, v;, 4

— If i = k — 1, no change.

—Ifk=nandi =1,
rotation edge (vy, v;) closes Hamiltonian path.
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o . . .
aay| Hamiltonian cycle algorithm

Input: undirected n-node graph ¢ = (V, E) represented with adjacency lists
Output: Hamiltonian cycle or FAIL

For each node v, keep used-edge list UE(v) and unused-edge list UUE(v) to

keep track which edges have been used in rotations while v was the head.

0. Vwinitialize UE(v)= @ and UUE(v)= adjacency list of v

1. Start with a uniformly random v; € V as head.

2. Repeat until a rotation edge closes Hamiltonian path or UUE(head)= .
a. LetP = (vq,..., V) denote the current path with head v,

b.  Execute (i), (ii), (iii) w.p. -, 52l g — 2 WL peqpectively,

n n n

I.  Reverse P and make v4 head.

Il. Rotate P with a uniformly random edge e from UE(vy,).

iii. Let (v, u) be the first edge on UUE(vy). If u # v; fori € k],
extend P t0 vy, ..., Vx41. O.W., rotate P with (v, u).

c. Update UE and UUE lists.
3. Return Hamiltonian cycle if found; FAIL o.w.
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.%gf, Initial analysis

« Simplifying assumption: For all v € V, list UUE (v) is initialized
to contain edges (v, u)Vu # v independently w.p. g
These edges are in a uniformly random order.

« Caution: (u,v) could be in UUE (u), but not in UUE (v)

/Lemma (Head is chosen uniformly at random at every iteration) )

Let V; be a R.V. representing the head vertex at iteration t.

If algorithm has not terminated at iteration t 4+ 1, then
Pr|Vig, =ulVe =us, ..,V = 4] =1/n Yu,ug, ..., uq

\_
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e%g?, Initial analysis

/Lemma (Head is chosen uniformly at random from V' at every iteration) A

Let V; be head vertex at iteration t.

If algorithm has not terminated at iteration t 4+ 1, then
\Pr[VHl =ul|V, =ug ...,V =u ] =1/n Yu,ug, ..., uy y

Proof: Lemma holds for V;. Now suppose the path P is (vy, ..., Vx)
* v, becomes new head only if path P is reversed: with probability 1/n

head head
newnea o ) ) )
7 @) ——&
«  With remaining probability, we pick a “neighbor’’ U of V; and
— 1fU = v; forsome i € [k — 1], then rotate P with edge (V;, v;)
U new head: v; 4
o
— else (that is, if U ¢ P) extend P peniicoc
U
O—O—o—— @
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%‘35, Initial analysis (continued)

/Lemma (Head is chosen uniformly at random from V' at every iteration) A

Let V; be head vertex at iteration t.

If algorithm has not terminated at iteration t 4+ 1, then
\Pr[VHl =ul|V, =ug ...,V =u ] =1/n Yu,ug, ..., uy y

Proof: Remains to prove: every vertex in V — {v,} is chosen to be U w. p. 1/n

1 |UE(v)] 1 1
If (v, u) € UE(vg), then Pr[U = u]=  TUEGD] — n

* If not, apply Principle of Deferred decisions:

Pr[U:u]=<1_E_ n n—1-|UEwY)|

1
n
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» What problem does it remind you of?
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%55, Analysis

" Main Theorem (with simplifying assumption) A

Suppose g = M. Then our algorithm finds a Hamiltonian cycle in O(nlogn
q - 8

: : : . 1
K|terat|ons with probability 1 — O (Z)

Proof: For algorithm to fail one of the following events must occur
e E; =no UUE list became empty, but not done after 3n Inn iterations.
e [E, = atleast one UUE list became empty during first 3n Inn iterations.
2n Inn iterations for getting a Hamiltonian path
n Inn iterations for closing a Hamiltonian path
 Pr[any specific coupon (node) is not collected in 2n Inn iterations] =

)

* Pr[don’t close a Hamiltonian path in n Inn iterations]=
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%‘35, Analysis (continued)

" Main Theorem (with simplifying assumption) A

Suppose g = M. Then our algorithm finds a Hamiltonian cycle in O(nlogn
q - 8

: : : . 1
K|terat|ons with probability 1 — O (Z)

Proof: For algorithm to fail one of the following events must occur
e E; =no UUE list became empty, but not done after 3n Inn iterations.
e [E, = atleast one UUE list became empty during first 3n In n iterations.

- E,, = atleast 9 Inn edges were removed from UUE (v) for some v € V in
the first 3n Inn iterations.

- E,p = initially, [UUE(v)| < 9Inn forsomev € V

)
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%S—, Analysis (continued)

" Main Theorem (with simplifying assumption)

\

Suppose q = 201%. Then our algorithm finds a Hamiltonian cycle in O (nlogn)

: : : . 1
\lteratlons with probability 1 — O (5)

)

Proof: E,, = initially, [UUE(v)| < 91nn for some v € V
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%55; Removing the assumption

fMain Theorem )

Suppose p = 401%. Then our algorithm (with appropriately initialized UUE lists)
finds a Hamiltonian cycle in a graph chosen from G,, ,, in O(nlogn) iterations

: - 1
\Wlth probability 1 — O (Z) Y,
Proof: Select g suchthatp = 2q — q%. Let G « Gy,,.

For each edge (u, v) of G:
 PutvinUUE(u), butnotu in UUE (v)
* Vice versa

« PutvinUUE(u)anduin UUE (v)
Randomize the order.
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