

Randomness in Computing

LECTURE 18

Last time

• Finding Hamiltonian cycles in random graphs

Today

Hashing

Static dictionary problem

Motivating example

Password checker to prevent people from using common passwords.

• S is the set of common passwords

- Universe: set U
- $S \subseteq U$ and m = |S|
- $m \ll |U|$

Goal: A data structure for storing S that supports the search query "Does $w \in S$?" for all words $w \in U$.

Deterministic solutions

• Store **S** as a sorted array (or as a binary search tree)

Search time: $O(\log m)$, Space: O(m)

• Store an array that for each $w \in U$ has 1 if $w \in S$ and 0 otherwise.

Search time: O(1), Space: O(|U|)

A randomized solution

Hashing

Chain Hashing

- **Hash table:** *n* bins, words that fall in the same bin are chained into a linked list.
- Hash function: $h: U \rightarrow [n]$

To construct the table

hash all elements of S

To search for word w

check if w is in bin h(w)

Desiderata for h:

- O(1) evaluation time.
- O(1) space to store h.

A random hash function

• Simplifying assumption: hash function h is selected at random:

$$\Pr[h(w) = j] = \frac{1}{n} \text{ for all } w \in U, j \in [n]$$

• Once *h* is chosen, every evaluation of *h* yields the same answer.

Search time:

- If $w \notin S$, expected number of words in bin h(w) is
- If $w \in S$, expected number of words in bin h(w) is

If we set n = m, then

- the expected search time is O(1)
- max time to search is max load: w.p. close to 1, it is $\Theta\left(\frac{\ln m}{\ln \ln m}\right)$

Faster than a search tree, with space still $\Theta(m)$.

Are we done?

- How many hash functions are there?
- How many bits do we need to store a description of a hash function?

This is prohibitively expensive!

Idea: Choose from a smaller family of hash functions.

Universal hash family

• A set \mathcal{H} of hash functions is **universal** if for every pair $w_1, w_2 \in U$ and for h chosen uniformly from \mathcal{H}

$$\Pr[h(w_1) = h(w_2)] \le \frac{1}{n}$$

Constructing a universal hash family $U = \{0, 1, ..., u - 1\}$

$$U = \{\mathbf{0}, \mathbf{1}, \dots, u - \mathbf{1}\}$$

- Fix a prime $p \ge |U|$ and think of the range as $\{0,1,...,n-1\}$.
- Define $h_{a,b}(x) = ((ax + b) \mod p) \mod n$ $\mathcal{H} = \{ h_{a,b} \mid a \in [p-1], 0 \le b \le p-1 \}$

Theorem

 \mathcal{H} is universal.

• Define $h_{a,b}(x) = ((ax + b) \mod p) \mod n$ $\mathcal{H} = \{h_{a,b} \mid a \in [p-1], 0 \le b \le p-1\}$

Proof: Fix $x_1 \neq x_2$ from U.

- Idea: count # of $h_{a,b}$ in \mathcal{H} for which x_1, x_2 collide.
- We will show that
 - They can't collide after performing mod p.
 - So, they must map to different values v_1 , v_2 at this point
 - Each (v_1, v_2) corresponds to a unique pair (a, b).
 - So, it suffices to count the number of pairs (v_1, v_2) with $v_1 \neq v_2$, but $v_1 \equiv v_2 \pmod{n}$

• Define $h_{a,b}(x) = ((ax + b) \mod p) \mod n$ $\mathcal{H} = \{h_{a,b} \mid a \in [p-1], 0 \le b \le p-1\}$

Claim 1. If $x_1 \neq x_2$ then $ax_1 + b \neq ax_2 + b \pmod{p}$.

• Define $h_{a,b}(x) = ((ax + b) \mod p) \mod n$ $\mathcal{H} = \{h_{a,b} \mid a \in [p-1], 0 \le b \le p-1\}$

Claim 1. If $x_1 \neq x_2$ then $ax_1 + b \neq ax_2 + b \pmod{p}$.

```
Claim 2. For every pair (v_1, v_2), where v_1 \neq v_2 and 0 \leq v_1, v_2 \leq p-1, \exists exactly one pair (a, b): ax_1 + b \equiv v_1 \pmod{p}; ax_2 + b \equiv v_2 \pmod{p}.
```


• Define $h_{a,b}(x) = ((ax + b) \mod p) \mod n$ $\mathcal{H} = \{h_{a,b} \mid a \in [p-1], 0 \le b \le p-1\}$

Using a universal family

As before:

- If $w \notin S$, expected number of words in bin h(w) is $\leq \frac{m}{n}$
- If $w \in S$, expected number of words in bin h(w) is $\leq 1 + \frac{m-1}{n}$

The previous guarantee on max load no longer holds!

Goal: Given S, find a hash function with no collisions for words in S.

Recall: Two elements $w_1, w_2 \in U$ collide under a hash function h if $h(w_1) = h(w_2)$.

A hash function **h** is **perfect** for set S if no elements of S collide under **h**.

Perfect hashing: no collisions

Theorem

If $h: U \to \{0,1, ..., n-1\}$ is chosen uniformly at random from a universal hash family, then $\forall S$ of size m, such that $n \geq m^2$, $\Pr[h \text{ is perfect for } S] \geq 1/2$.

Proof: Let s_1, \dots, s_m be elements of S.

• Let
$$X_{ij} = \begin{cases} 1 \text{ if } h(s_i) = h(s_j) & X = \# \text{ of collisions} = \sum_{i,j \in [m], i < j} X_{ij} \\ 0 & \text{otherwise} \end{cases}$$
• $\mathbb{E}[X] = \begin{bmatrix} x_{ij} \\ y \end{bmatrix} = \begin{bmatrix} x_{i$

CS 537

Perfect hashing

Theorem

If $h: U \to \{0,1,...,n-1\}$ is chosen uniformly at random from a universal hash family, then $\forall S$ of size m, such that $n \geq m^2$, $\Pr[h \text{ is perfect for } S] \geq 1/2$.

- Select $h \in \mathcal{H}$ until a perfect h for a given S is found.
- Expected number of tries is at most 2.
- Each try takes O(m) time.
- **Drawback:** $\Omega(m^2)$ space.

2-level scheme for perfect hashing

- Set n=m.
- Select $h \in \mathcal{H}$ until h with at most m collisions is found.
- For each bin i with collisions, that is, with k > 1 items:

- select a new hash function h_i with k^2 bins from a universal family until h_i has no collisions.

2-level scheme for perfect hashing

- Set n=m.
- Select $h \in \mathcal{H}$ until h with at most m collisions is found.
- For each bin i with collisions, that is, with k > 1 items:
 - select a new hash function h_i with k^2 bins from a universal family until h_i has no collisions.

Theorem

2-level scheme achieves perfect hashing with O(m) space.

A solution for static dictionary problem with:

- O(1) worst case guarantee on search time.
- O(m) space.
- Expected O(m) preprocessing time.

Analysis of 2-level scheme

Theorem

2-level scheme achieves perfect hashing with O(m) space.

Proof:

- Let X = # of collisions in Stage 1.
- We showed before: $\Pr\left[X \ge \frac{m^2}{n}\right] \le \frac{1}{2}$.
- Now n = m: $\Pr[X \ge m] \le \frac{1}{2}$.
- So at least half of $h \in \mathcal{H}$ have $\leq m$ collisions.
- Assume we found such *h*.

Analysis of 2-level scheme

Theorem

2-level scheme achieves perfect hashing with O(m) space.

Proof (continued): Assume we found $h \in \mathcal{H}$ with $\leq m$ collisions.

- Let k_i = number of items in bin i.
- Then # of collisions between items in bin i is

Conclusion: 2-level hashing

A solution for static dictionary problem with:

- O(1) worst case guarantee on search time.
- O(m) space.
- Expected O(m) preprocessing time.