LECTURE 18

Last time
• Finding Hamiltonian cycles in random graphs

Today
• Hashing
Motivating example

Password checker to prevent people from using common passwords.

- S is the set of common passwords

- **Universe:** set U
- $S \subseteq U$ and $m = |S|$
- $m \ll |U|$

Goal: A data structure for storing S that supports the search query “Does $w \in S$?” for all words $w \in U$.

11/8/2022

Sofya Raskhodnikova; Randomness in Computing
Deterministic solutions

- Store S as a sorted array (or as a binary search tree)

 Search time: $O(\log m)$, **Space:** $O(m)$

- Store an array that for each $w \in U$ has 1 if $w \in S$ and 0 otherwise.

 Search time: $O(1)$, **Space:** $O(|U|)$

A randomized solution

- Hashing
Chain Hashing

- **Hash table:** \(n \) bins, words that fall in the same bin are chained into a linked list.
- **Hash function:** \(h : U \rightarrow [n] \)

To construct the table

hash all elements of \(S \)

To search for word \(w \)

check if \(w \) is in bin \(h(w) \)

Desiderata for \(h \):
- \(O(1) \) evaluation time.
- \(O(1) \) space to store \(h \).
A random hash function

- **Simplifying assumption:** hash function h is selected at random:
 \[\Pr[h(w) = j] = \frac{1}{n} \text{ for all } w \in U, j \in [n] \]
- Once h is chosen, every evaluation of h yields the same answer.

Search time:
- If $w \notin S$, expected number of words in bin $h(w)$ is
- If $w \in S$, expected number of words in bin $h(w)$ is

If we set $n = m$, then
- the expected search time is $O(1)$
- max time to search is max load: w.p. close to 1, it is $\Theta\left(\frac{\ln m}{\ln \ln m}\right)$

Faster than a search tree, with space still $\Theta(m)$.
Are we done?

- How many hash functions are there?
- How many bits do we need to store a description of a hash function?

This is prohibitively expensive!

Idea: Choose from a smaller family of hash functions.
Universal hash family

- A set \mathcal{H} of hash functions is **universal** if for every pair $w_1, w_2 \in U$ and for h chosen uniformly from \mathcal{H}

\[
\Pr[h(w_1) = h(w_2)] \leq \frac{1}{n}
\]

Constructing a universal hash family

- Fix a prime $p \geq |U|$ and think of the range as $\{0, 1, \ldots, n-1\}$.
- Define $h_{a,b}(x) = ((ax + b) \mod p) \mod n$
- $\mathcal{H} = \{h_{a,b} \mid a \in [p-1], 0 \leq b \leq p - 1\}$

Theorem

\mathcal{H} is universal.

$U = \{0, 1, \ldots, u - 1\}$
Proof that \mathcal{H} is universal

- Define $h_{a,b}(x) = ((ax + b) \mod p) \mod n$
 \[\mathcal{H} = \{ h_{a,b} \mid a \in [p - 1], 0 \leq b \leq p - 1 \} \]

Proof: Fix $x_1 \neq x_2$ from U.

- **Idea:** count # of $h_{a,b}$ in \mathcal{H} for which x_1, x_2 collide.
- **We will show that**
 - They can’t collide after performing $\mod p$.
 - So, they must map to different values v_1, v_2 at this point
 - Each (v_1, v_2) corresponds to a unique pair (a, b).
 - So, it suffices to count the number of pairs (v_1, v_2) with $v_1 \neq v_2$, but $v_1 \equiv v_2 \ (\mod n)$
Proof that \mathcal{H} is universal

- Define $h_{a,b}(x) = ((ax + b) \mod p) \mod n$

$$\mathcal{H} = \{ h_{a,b} \mid a \in [p - 1], 0 \leq b \leq p - 1 \}$$

Claim 1. If $x_1 \neq x_2$ then $ax_1 + b \neq ax_2 + b \pmod{p}$.
Proof that \mathcal{H} is universal

- Define $h_{a,b}(x) = ((ax + b) \mod p) \mod n$
 \[\mathcal{H} = \{ h_{a,b} \mid a \in [p - 1], 0 \leq b \leq p - 1 \} \]

Claim 1. If $x_1 \neq x_2$ then $ax_1 + b \neq ax_2 + b \pmod p$.

Claim 2. For every pair (v_1, v_2), where $v_1 \neq v_2$ and $0 \leq v_1, v_2 \leq p - 1$, \exists exactly one pair (a, b):

 \[ax_1 + b \equiv v_1 \pmod p; \]
 \[ax_2 + b \equiv v_2 \pmod p. \]
Proof that \mathcal{H} is universal

- Define $h_{a,b}(x) = ((ax + b) \mod p) \mod n$

 $\mathcal{H} = \{ h_{a,b} \mid a \in [p-1], 0 \leq b \leq p-1 \}$
Using a universal family

As before:
• If \(w \notin S \), expected number of words in bin \(h(w) \) is \(\leq \frac{m}{n} \).
• If \(w \in S \), expected number of words in bin \(h(w) \) is \(\leq 1 + \frac{m-1}{n} \).

The previous guarantee on max load no longer holds!

Goal for next time: Given \(S \), find a hash function with no collisions for words in \(S \).