LECTURE 18

Last time
• Poisson approximation
• Application: max load
• Application: Coupon Collector

Today
• Hashing
Motivating example

Password checker to prevent people from using common passwords.

- S is the set of common passwords

- **Universe:** set U
- $S \subseteq U$ and $m = |S|$
- $m \ll |U|$

Goal: A data structure for storing S that supports the search query

“Does $w \in S$?” for all words $w \in U$.

Solutions

Deterministic solutions

• Store S as a sorted array (or as a binary search tree)

Search time: $O(\log m)$, Space: $O(m)$

• Store an array that for each $w \in U$ has 1 if $w \in S$ and 0 otherwise.

Search time: $O(1)$, Space: $O(|U|)$

A randomized solution

• Hashing
Chain Hashing

- **Hash table:** n bins, words that fall in the same bin are chained into a linked list.
- **Hash function:** $h : U \rightarrow [n]$

To construct the table
- hash all elements of S

To search for word w
- check if w is in bin $h(w)$

Desiderata for h:
- $O(1)$ evaluation time.
- $O(1)$ space to store h.
A random hash function

- **Simplifying assumption:** hash function h is selected at random:
 $$\Pr[h(w) = j] = \frac{1}{n} \text{ for all } w \in U, j \in [n]$$
- Once h is chosen, every evaluation of h yields the same answer.

Search time:
- If $w \notin S$, expected number of words in bin $h(w)$ is
- If $w \in S$, expected number of words in bin $h(w)$ is

If we set $n = m$, then
- the expected search time is $O(1)$
- max time to search is max load: w.p. close to 1, it is $\Theta\left(\frac{\ln m}{\ln \ln m}\right)$

Faster than a search tree, with space still $\Theta(m)$.
Are we done?

- How many hash functions are there?
- How many bits do we need to store a description of a hash function?

This is prohibitively expensive!

- Idea: Choose from a smaller family of hash functions.
Universal hash family

- A set \mathcal{H} of hash functions is **universal** if for every pair $w_1, w_2 \in U$ and for h chosen uniformly from \mathcal{H}

$$\Pr[h(w_1) = h(w_2)] \leq \frac{1}{n}$$

Constructing a universal hash family

- Fix a prime $p \geq |U|$ and think of the range as $\{0, 1, \ldots, u - 1\}$.
- Define $h_{a,b}(x) = ((ax + b) \mod p) \mod n$

$$\mathcal{H} = \{h_{a,b} \mid a \in [p - 1], 0 \leq b \leq p - 1\}$$

Theorem

\mathcal{H} is universal.
Proof that \mathcal{H} is universal

- Define $h_{a,b}(x) = ((ax + b) \mod p) \mod n$

 $\mathcal{H} = \{ h_{a,b} \mid a \in [p - 1], 0 \leq b \leq p - 1 \}$

Proof: Fix $x_1 \neq x_2$ from U.

- Idea: count # of $h_{a,b}$ in \mathcal{H} for which x_1, x_2 collide.
- We will show that
 - They can’t collide after performing mod p.
 - So, they must map to different values v_1, v_2 at this point
 - Each (v_1, v_2) corresponds to a unique pair (a, b).
 - So it suffices to count the number of pairs (v_1, v_2) with $v_1 \neq v_2$, but $v_1 = v_2 \mod n$
Proof that \mathcal{H} is universal

- Define $h_{a,b}(x) = ((ax + b) \mod p) \mod n$
- $\mathcal{H} = \{ h_{a,b} \mid a \in [p - 1], 0 \leq b \leq p - 1 \}$
Proof that \mathcal{H} is universal

- Define $h_{a,b}(x) = ((ax + b) \mod p) \mod n$
 $$\mathcal{H} = \{ h_{a,b} \mid a \in [p-1], 0 \leq b \leq p-1 \}$$

Claim 1. If $x_1 \neq x_2$ then $ax_1 + b \neq ax_2 + b \mod p$.

Claim 2. For every pair (v_1, v_2), where $v_1 \neq v_2$ and $0 \leq v_1, v_2 \leq p - 1$, there exists exactly one pair (a, b):
Proof that \mathcal{H} is universal

- Define $h_{a,b}(x) = ((ax + b) \mod p) \mod n$

 $\mathcal{H} = \{h_{a,b} \mid a \in [p - 1], 0 \leq b \leq p - 1\}$
Using a universal family

As before:
- If $w \notin S$, expected number of words in bin $h(w)$ is $\leq \frac{m}{n}$
- If $w \in S$, expected number of words in bin $h(w)$ is $\leq 1 + \frac{m-1}{n}$

The previous guarantee on max load no longer holds!

Goal for next time: Given S, find a hash function with no collisions for words in S.