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Randomness in Computing

LECTURE 19 
Last time
• Hashing

Today
• Probabilistic method
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The probabilistic method

To prove that an object with required properties exists:

1. Define a distribution on objects.

2. Sample an object.

3. Prove that a sampled object has required properties with 

positive probability.

• Sometimes proofs of existence can be converted into 

efficient randomized constructions.

• Sometimes they can be converted into deterministic 

constructions (derandomization).
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Method 1: The counting argument

• 𝐾𝑛 = complete graph on 𝑛 vertices (𝑛-clique)

Proof: Define a random experiment:

Color each edge of 𝑲𝒏 independently and uniformly blue or red.

• Fix an ordering of the 
𝑛
𝑘

 different 𝑘-cliques.

• Let 𝑀𝑖 be the event that clique 𝑖 is monochromatic, for 𝑖 = 1, … ,
𝑛
𝑘

Pr 𝑀𝑖 = 2 ⋅ 2
− 𝑘

2

• Pr ⋃
𝑖=1

𝑛
𝑘 𝑀𝑖 ≤ σ

𝑖=1

𝑛
𝑘 Pr[𝑀𝑖] =

𝑛
𝑘

⋅ 2
− 𝑘

2
+1

< 1

• Probability of a coloring with no monochromatic 𝑘-clique is > 0.
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Theorem

If 
𝑛
𝑘

⋅ 2
− 𝑘

2
+1

< 1 then it is possible to color the edges 

of 𝐾𝑛 with two colors so that no 𝐾𝑘 is monochromatic.

Union Bound



Converting an existence proof into an 
efficient randomized construction

• Can we efficiently sample a coloring?

• How many samples do we need to generate                                   

a coloring with no monochromatic 𝒌-clique?

– Probability of success is at least 𝑝 = 1 −
𝑛
𝑘

⋅ 2
− 𝑘

2
+1

– # of samples ∼Geom(𝑝), expectation: 1/𝑝

– Want: 1/𝑝 to be polynomial in the problem size

– If 1 − 𝑝 = 𝑜(1), we get a Monte Carlo construction algorithm                 

that errs with probability 𝑜(1).

• To get a Las Vegas algorithm (always correct answers),                    

we need a poly-time procedure for checking if                            

the coloring is monochromatic.

– If 𝑘 is constant, we can check that all 
𝑛
𝑘

 cliques are not monochromatic.
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Yes



Method 2: The expectation argument

• It can’t be that everybody is better (or worse) than the average.

Proof (by contradiction): 

Suppose to the contrary that Pr 𝑋 ≥ 𝜇 = 0. Then

𝜇 = 𝔼 𝑋 = ෍

𝑥

𝑥 Pr 𝑋 = 𝑥  

< ෍

𝑥

𝜇 Pr 𝑋 = 𝑥 = 𝜇 ෍

𝑥

Pr 𝑋 = 𝑥 = 𝜇,

a contradiction.
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Claim

Let 𝑋 be a R.V. with 𝔼 𝑋 = 𝜇. Then 

Pr 𝑋 ≥ 𝜇 > 0 and Pr 𝑋 ≤ 𝜇 > 0. 

≤ 

> 



Example: Finding a large cut

Recall: 

• A cut in a graph 𝐺 = (𝑉, 𝐸) is a partition of 𝑉 into two nonempty sets.

• The size of the cut is the number of edges that cross it.

• Finding a max cut is NP-hard.
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Theorem

Let 𝐺 be an undirected graph with 𝑚 edges.

Then 𝐺 has a cut of size ≥ 𝑚/2.



Example: Existence of a large cut

Proof: Construct sets 𝐴 and 𝐵 of vertices by assigning each vertex 

to 𝐴 or 𝐵 uniformly and independently at random.

• For each edge 𝑒, let 𝑋𝑒 = ቊ
1 if edge connects 𝐴 to 𝐵
0 otherwise 

     𝔼 𝑋𝑒 =1/2

• Let 𝑋 = # of edges crossing the cut.

    𝔼[𝑋] = 𝔼 σ𝑒∈𝐸 𝑋𝑒 = σ𝑒∈𝐸 𝔼 𝑋𝑒 = 𝑚 ⋅
1

2
=

𝑚

2

There exists a cut (𝐴, 𝐵) of size at least 𝑚/2.
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Theorem

Let 𝐺 be an undirected graph with 𝑚 edges.

Then 𝐺 has a cut of size ≥ 𝑚/2.

Linearity of expectation



Example: Finding a large cut

• It is easy to choose a random cut

• Probability of success: 𝑝 = Pr 𝑋 ≥
𝑚

2

• An upper bound on 𝑋?
𝑚

2
= 𝔼 𝑋 = ෍

𝑖<𝑚/2

𝑖 ⋅ Pr[𝑋 = 𝑖] + ෍

𝑖≥𝑚/2

𝑖 ⋅ Pr[𝑋 = 𝑖]

≤  
𝑚 − 1

2
⋅ 1 − 𝑝  +  𝑚 ⋅ 𝑝

𝑚 ≤ 𝑚 − 1 − 𝑚 − 1 ⋅ 𝑝 + 2𝑚 ⋅ 𝑝

𝑝 ≥
1

𝑚 + 1
 

• Expected # of samples to find a large cut:

• Can test if a cut has ≥
𝑚

2
 edges by counting edges crossing the cut (poly time)
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X ≤ 𝑚 

Las Vegas

≤ 𝑚 + 1 



Derandomization: conditional expectations

Finding a large cut

Idea: Place each vertex deterministically, ensuring that

𝔼 𝑋| placement so far ≥ 𝔼 𝑋 =
𝑚

2
• R.V. 𝑌𝑖 is 𝐴 or 𝐵, indicating which set vertex 𝑖 is placed in, ∀𝑖 ∈ [𝑛]

Base case: 𝔼 𝑋|𝑌1 = 𝐴 = 𝔼 𝑋|𝑌1 = 𝐵 = 𝔼 𝑋

Inductive step: Let 𝑦1, … , 𝑦𝑘 be placements so far (each is 𝐴 or 𝐵) and 

suppose 𝔼 𝑋|𝑌1 = 𝑦1, … , 𝑌𝑘 = 𝑦𝑘 ≥ 𝔼 𝑋 .

𝔼 𝑋|𝑌1 = 𝑦1, … , 𝑌𝑘 = 𝑦𝑘 =
1

2
𝔼 𝑋|𝑌1 = 𝑦1, … , 𝑌𝑘 = 𝑦𝑘 , 𝑌𝑘+1 = 𝐴  

 +
1

2
𝔼 𝑋|𝑌1 = 𝑦1, … , 𝑌𝑘 = 𝑦𝑘 , 𝑌𝑘+1 = 𝐵

Then 𝔼 𝑋|𝑌1 = 𝑦1, … , 𝑌𝑘+1 = 𝑦𝑘+1 ≥ 𝔼 𝑋|𝑌1 = 𝑦1, … , 𝑌𝑘 = 𝑦𝑘 ≥ 𝔼 𝑋
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By symmetry (it doesn’t 
matter where the first node is)

By Law of Total Expectation

Pick 𝒚𝒌+𝟏 to maximize 
conditional probability
Pick 𝒚𝒌+𝟏 to maximize 
conditional expectation



Finding a large cut: derandomization

When the dust settles

• Place vertex 𝑘 + 1 in the set (𝐴 or 𝐵) with fewer neighbors, 

breaking ties arbitrarily
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𝐴 𝐵 undecided
1

10

1/2

𝒌 + 𝟏



Example 2: Maximum satisfiability 
(MAX-SAT)

Logical formulas

• Boolean variables: variables that can take on values T/F (or 1/0)

• Boolean operations: ∨, ∧, and ¬

• Boolean formula: expression with Boolean variables and ops

SAT  (deciding if a given formula has a satisfying assignment) is NP-complete

• Literal: A Boolean variable or its negation.

• Clause: OR of literals.

• Conjunctive normal form (CNF):  AND of clauses.

MAX-SAT: Given a CNF formula, find an assignment satisfying as many clauses 

as possible.

• Assume no clause contains 𝑥 and ҧ𝑥 (o.w., it is always satisfied).
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Ex: 

 x1 = 1, x2 = 1, x3 = 0 satisfies the formula.

 

x1  x2  x3( )  x1  x2  x3( )  x2  x3( )  x1  x2  x3( )

𝑥𝑖  or ഥ𝑥𝑖

𝐶1 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3

𝐶1 ∧ 𝐶2 ∧ 𝐶3 ∧ 𝐶4



Example 2: MAX-SAT

Proof: Assign values 0 or 1 uniformly and independently to each variable.

• 𝑋𝑖 = indicator R.V. for clause 𝑖 being satisfied.

• 𝑋 = # of satisfied clauses = σ𝑖∈[𝑚] 𝑋𝑖

• Pr 𝑋𝑖 = 1 = 1 − 2−𝑘𝑖

𝔼[𝑋] = ෍

𝑖∈[𝑚]

𝔼 𝑋𝑖 = ෍

𝑖∈[𝑚]

(1 − 2−𝑘𝑖) ≥ 𝑚(1 − 2−𝑘)

• There exists an assignment satisfying at least that many clauses.
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Theorem

Given 𝑚 clauses, let 𝑘𝑖 = # literals in clause 𝑖, for 𝑖 ∈ [𝑚].

Let 𝑘 = min
𝑖∈[𝑚]

𝑘𝑖. There is an assignment that satisfies at least

𝑚 1 − 2−𝑘  clauses.



Example 3: Large sum-free subset

• Given a set 𝑨 of positive integers, a sum-free subset 𝑺 ⊆ 𝑨 

contains no three elements 𝒊, 𝒋,𝒌 ∈ 𝑺 satisfying 𝒊 + 𝒋 = 𝒌.

• Goal: find as large sum-free subset 𝑺 as possible.

• Examples: A = {2, 3, 4, 5, 6, 8, 10}

A = {1, 2, 3, 4, 5, 6, 8, 9, 10, 18}
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Theorem

Every set 𝑨 of 𝒏 positive integers contains 
a sum-free subset of size  greater than 𝒏/3.



Finding a large sum-free subset

A randomized algorithm

1. Let 𝒑 > max element of 𝑨 be a prime, where 𝒑 = 𝟑𝒌 + 𝟐.                           

//The other choice, 𝟑𝒌 + 𝟏,  would also work.

2. Select a number 𝒒 uniformly at random from [𝒑 − 𝟏]. 

3. Map each element 𝒕 ∈ 𝑨 to 𝒕𝒒 mod 𝒑.

4.  𝑺  all elements of 𝑨 that got mapped to {𝒌 + 𝟏, … , 𝟐𝒌 + 𝟏}.

5. Return 𝑺.

Need to prove: 

• 𝑺 is sum-free

• The expected number of elements from 𝑨 that are mapped to 

{𝒌 + 𝟏, … , 𝟐𝒌 + 𝟏} is > 𝒏/𝟑.
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Showing that 𝑺 is sum-free

15

• Let 𝒊 and 𝒋 be any two elements in 𝑺.

• Say 𝒊 is mapped to 𝜶; 𝒋 is mapped to 𝜷; 𝜶, 𝜷 ∈ 𝒌 + 𝟏, 2𝒌 + 𝟏

• Then 𝜶 = 𝒊𝒒 𝐦𝐨𝐝 𝒑     and   𝜷 = 𝒋𝒒 𝐦𝐨𝐝 𝒑 

• We need to show that 𝒊 + 𝒋, if present in 𝑨, is not mapped to  

[𝒌 + 𝟏, 2𝒌 + 𝟏].

• 𝒊 + 𝒋 is mapped to ??

Argue that

• (𝜶 + 𝜷) must be greater than 2𝒌 + 𝟏.

• If (𝜶 + 𝜷) > 𝒑, then (𝜶 + 𝜷) 𝐦𝐨𝐝 𝒑 is at most 𝒌. 

1     2                …               𝒌   𝒌 + 𝟏  …     …     … 𝟐𝒌 + 𝟏            …             3𝒌 + 𝟏 𝜶 𝜷

(𝜶 + 𝜷) 𝐦𝐨𝐝 𝒑 
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The expected size of 𝑺

1. Let  𝒑 > max element of 𝑨 be a prime, where 𝒑 = 𝟑𝒌 + 𝟐. 

2. Select a number 𝒒 uniformly at random from [𝒑 − 𝟏]. 

3. Map each element 𝒕 ∈ 𝑨 to 𝒕𝒒 mod 𝒑.

4.  𝑺  all elements of 𝑨 that got mapped to {𝒌 + 𝟏, … , 𝟐𝒌 + 𝟏}.

Main idea: Every element 𝒕 ∈ 𝑨 gets mapped to 𝒕𝒒 mod 𝒑,      

which is a uniformly random element of {𝟏, … , 𝟑𝒌 + 𝟏}.

Pr 𝒕 is selected to be in 𝑺 =
|{𝒌 + 𝟏, … , 𝟐𝒌 + 𝟏}|

|{𝟏, … , 𝟑𝒌 + 𝟏}|
> 1/3
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Example 3: Large sum-free subset

• Given a set 𝑨 of positive integers, a sum-free subset 𝑺 ⊆ 𝑨 

contains no three elements 𝒊, 𝒋,𝒌 ∈ 𝑺 satisfying 𝒊 + 𝒋 = 𝒌.

• Goal: find as large as 𝑺 as possible.

• Examples: A = {2, 3, 4, 5, 6, 8, 10}

A = {1, 2, 3, 4, 5, 6, 8, 9, 10, 18}
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Theorem

Every set 𝑨 of 𝒏 positive integers contains 
a sum-free subset of size greater than 𝒏/3.
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