LECTURE 19

Last time

• Hashing
• Universal hash families

Today

• Perfect hashing
• Bloom filters
Static dictionary problem

Motivating example
Password checker to prevent people from using common passwords.
- S is the set of common passwords

- **Universe**: set U
- $S \subseteq U$ and $m = |S|$
- $m \ll |U|$

Goal: A data structure for storing S that supports the search query

“Is $w \in S$?” for all words $w \in U$.

Solutions

Deterministic solutions

• Store S as a sorted array (or as a binary search tree)

Search time: $O(\log m)$, Space: $O(m)$

• Store an array that for each $w \in U$ has 1 if $w \in S$ and 0 otherwise.

Search time: $O(1)$, Space: $O(|U|)$

A randomized solution

• Hashing
Chain Hashing

- **Hash table:** \(n \) bins, words that fall in the same bin are chained into a linked list.

- **Hash function:** \(h : U \rightarrow [n] \)

To construct the table:

hash all elements of \(S \)

To search for word \(w \):

check if \(w \) is in bin \(h(w) \)

Desiderata for \(h \):

- \(O(1) \) evaluation time.
- \(O(1) \) space to store \(h \).
Universal hash family

- A set \mathcal{H} of hash functions is **universal** if for every pair $w_1, w_2 \in U$ and for h chosen uniformly from \mathcal{H}

 $$\Pr[h(w_1) = h(w_2)] \leq \frac{1}{n}$$

Constructing a universal hash family

- Fix a prime $p \geq |U|$ and think of the range as $\{0, 1, \ldots, n-1\}$.
- Define $h_{a,b}(x) = ((ax + b) \mod p) \mod n$

 $$\mathcal{H} = \{h_{a,b} \mid a \in [p-1], 0 \leq b \leq p-1\}$$

Theorem

\mathcal{H} is universal.
Using a universal family

As before:

- If \(w \notin S \), expected number of words in bin \(h(w) \) is \(\leq \frac{m}{n} \).
- If \(w \in S \), expected number of words in bin \(h(w) \) is \(\leq 1 + \frac{m - 1}{n} \).

The previous guarantee on max load no longer holds!

Goal: Given \(S \), find a hash function with no collisions for words in \(S \).

Recall: Two elements \(w_1, w_2 \in U \) collide under a hash function \(h \) if \(h(w_1) = h(w_2) \).

A hash function \(h \) is perfect for set \(S \) if no elements of \(S \) collide under \(h \).
Perfect hashing: no collisions

Theorem

If \(h: U \rightarrow \{0, 1, \ldots, n - 1\} \) is chosen uniformly at random from a universal hash family, then \(\forall S \) of size \(m \), such that \(n \geq m^2 \),
\[
\Pr[h \text{ is perfect for } S] \geq 1/2.
\]

Proof: Let \(s_1, \ldots, s_m \) be elements of \(S \).

- Let \(X_{ij} = \begin{cases} 1 & \text{if } h(s_i) = h(s_j) \\ 0 & \text{otherwise} \end{cases} \)

Linearity of expectation

\[
\mathbb{E}[X] = \sum_{i,j \in [m], i < j} \mathbb{E}[X_{ij}] = \binom{m}{2} \mathbb{E}[X_{12}] = \binom{m}{2} \Pr[h(s_1) = h(s_2)]
\]

Symmetry

\[
X_{12} \text{ is an indicator}
\]

Markov's inequality

\[
\Pr[X \geq 1] \leq \frac{\mathbb{E}[X]}{\frac{m^2}{n}} \leq \frac{\mathbb{E}[X]}{m^2/n} \leq \frac{m^2}{2n}
\]

since \(n \geq m^2 \)

h is universal

\[
\text{by Markov}
\]

\[
\text{Pr}[h \text{ is perfect for } S] \geq 1/2
\]
Perfect hashing

Theorem

If $h: U \rightarrow \{0,1,\ldots,n - 1\}$ is chosen uniformly at random from a universal hash family, then $\forall S$ of size m, such that $n \geq m^2$, $\Pr[h $ is perfect for $S] \geq 1/2$.

- Select $h \in \mathcal{H}$ until a perfect h for a given S is found.
- Expected number of tries is at most 2.
- Each try takes $O(m)$ time.
- **Drawback:** $\Omega(m^2)$ space.
2-level scheme for perfect hashing

- Set $n = m$.
- Select $h \in \mathcal{H}$ until h with at most m collisions is found.
- For each bin i with collisions, that is, with $k > 1$ items:
 - select a new hash function h_i with k^2 bins from a universal family until h_i has no collisions.
2-level scheme for perfect hashing

- Set \(n = m \).
- Select \(h \in \mathcal{H} \) until \(h \) with at most \(m \) collisions is found.
- For each bin \(i \) with collisions, that is, with \(k > 1 \) items:
 - select a new hash function \(h_i \) with \(k^2 \) bins from a universal family until \(h_i \) has no collisions.

Theorem

2-level scheme achieves perfect hashing with \(O(m) \) space.

A solution for static dictionary problem with:
- \(O(1) \) worst case guarantee on search time.
- \(O(m) \) space.
- Expected \(O(m) \) preprocessing time.
Analysis of 2-level scheme

Theorem

2-level scheme achieves perfect hashing with $O(m)$ space.

Proof:

• Let $X = \#$ of collisions in Stage 1.

• We showed before: $\Pr \left[X \geq \frac{m^2}{n} \right] \leq \frac{1}{2}$.

• Now $n = m$: $\Pr[X \geq m] \leq \frac{1}{2}$.

• So at least half of $h \in \mathcal{H}$ have $\leq m$ collisions.

• Assume we found such h.
Analysis of 2-level scheme

Theorem

2-level scheme achieves perfect hashing with $O(m)$ space.

Proof (continued): Assume we found $h \in \mathcal{H}$ with $\leq m$ collisions.

- Let $k_i =$ number of items in bin i.
- Then # of collisions between items in bin i is
A solution for static dictionary problem with:

- $O(1)$ worst case guarantee on search time.
- $O(m)$ space.
- Expected $O(m)$ preprocessing time.
Approximate solutions

for static dictionary problem
(or dynamic with insertions only)

- **False positives:** If $w \in S$, our data structure must answer correctly. If $w \notin S$, we may err with small probability.
- E.g, we prevent all unsuitable passwords and some suitable ones, too.

Fingerprints

- Use hash function h
- Store sorted list L of fingerprints $h(x), x \in S$.
- To see if $w \in S$, perform binary search for $h(w)$.
Bloom filters

- Trade off between space and false positive probability
- Parameters k, n
- Bloom filter: array of n bits $A[1], \ldots, A[n]$
 - Initially: all bits are 0
 - k independent random hash functions h_1, \ldots, h_k with range $[n]$
- To represent set S
 - For each $x \in S$ and $i \in [k]$, set bits $A[h_i(x)]$ to 1.
- To decide if $w \in S$:
 - If for all $i \in [k]$, bits $A[h_i(w)] = 1$, accept, o.w. reject.
Analysis of False Positive rate

• For any n, we can set $k = \frac{n}{m} \ln 2$.
• Consider $w \in U - S$.
• Let $b_i = A[h_i(w)]$ for all $i \in [k]$.
• After m elements hashed into Bloom filter, $\Pr[b_i = 0] =$