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%“S—, The probabilistic method

To prove that an object with required properties exists:
1. Define a distribution on objects.
2. Sample an object.

3. Prove that a sampled object has required properties with
positive probability.

« Sometimes proofs of existence can be converted into
efficient randomized constructions.

« Sometimes they can be converted into deterministic
constructions (derandomization).
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.%gf, Method 1: The counting argument

e K, = complete graph on n vertices (n-clique)

/Theorem A

k
If (Z) - 2_(2)+1 < 1then itis possible to color the edges

Kof K,, with two colors so that no K}, is monochromatic. )

Proof: Define a random experiment:

Color each edge of K,, independently and uniformly blue or red.
n

k
Let M; be the event that clique i is monochromatic, fori =1, ..., (n)

k
Union Bound Pr[Ml-] — 2. 2—(’;)
e[ U] & 5® pegaag = (1) 26 <1

i=1 k
Probability of a coloring with no monochromatic k-clique is > 0.

Fix an ordering of the ( ) different k-cliques.
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ms Converting an existence proof into an

- Can we efficiently sample a coloring? Yes

« How many samples do we need to generate

a coloring with no monochromatic k-clique?

- : n _(k
— Probability of success is at leastp = 1 — (k) -2 \2

)+1
— # of samples ~Geom(p), expectation: 1/p
— Want: 1/p to be polynomial in the problem size

— If 1 —p =0(1), we get a Monte Carlo construction algorithm
that errs with probability o(1).

« Togeta Las Vegas algorithm (always correct answers),
we need a poly-time procedure for checking if
the coloring is monochromatic.

— If k Is constant, we can check that all (Z) cliques are not monochromatic.
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@‘S Method 2: The expectation argument

K 4

It can’t be that everybody is better (or worse) than the average.
Claim h

Let X be a R.V. with E[X] = u. Then
KPr[X > u] > 0and Pr[X < u] > 0.

)

Proof (by contradiction): <
Suppose to the contrary that Pr[X = u] = 0. Then

u < E[X] =ZxPr[X=x]
<2,uPr[X=x] =u2Pr[X=x] = U,

a contradiction.
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%55; Example: Finding a large cut

Recall:

« Acutinagraph ¢ = (V,E) is a partition of VV into two nonempty sets.
« The size of the cut is the number of edges that cross it.

« Finding a max cut is NP-hard.

ﬂr

heorem A

Let G be an undirected graph with m edges.

Then G has a cut of size = m/2.
- J
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%?5, Example: Existence of a large cut

/Theorem A

Let G be an undirected graph with m edges.

Then G has a cut of size = m/2.
- /
Proof: Construct sets A and B of vertices by assigning each vertex

to A or B uniformly and independently at random.

1 if edge connects A to B

 Foreach edge e, let Xe - {0 otherwise

E[X,] =1/
Linearity of expectation

. Let X = # of edges cri’w
1 m

IE[X] — E[ZeEEXe] — ZeEE IIEz[Xe] =m:- PE)
There exists a cut (A4, B) of size at least m /2.
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%?5; Example: Finding a large cut

* |t is easy to choose a random cut

- Probability of success: p = Pr [X = %]

* An upper bound on X? X<m
m
§=]E[X]= 2 [-Pr|X =1i] + 2 [ - Pr|X =1i]
i<m/2 i2m/2
m—1
< > -(1-—p) + m-p
m<m-1-(m-1)-p+2m-p
1
>
p_m+1

Expected # of samples to finda large cut: < m + 1
Can test if a cut has > % edges by counting edges crossing the cut (poly time)

Las Vegas
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%?, Derandomization: conditional expectations

Finding a large cut
Idea: Place each vertex deterministically, ensuring that

m
E[X| placement so far] = E[X] = o)

 R.V.Y;is A or B, indicating which set vertex i is placed in, Vi € [n]

: = B try (it doesn’t
Base case: IE[X Y1 = A] = [E[X Y1 =58 ] = ]E[X ] myai“{g;ra/;errye(;hecj,'?rss’: node is)

Inductive step: Let y4, ..., yi be placements so far (each is A or B) and

suppose E[X|Y; = y1, ..., Vi = y,| = E[X]. By Law of Total Expectation

E[X|Y; =y, ., Ve =yl = E]E[X|Y1 = V1, s Vg = Vi Yier1 = 4]

Pick y;.1 to maximize < 1

+=E[X|Y; = y4, .., Yk = Yk, Y41 = B]

conditional expectation 2

Then E[X|Y; = y1, ., Vi1 = Yia1] = E[X|Y, =y, ., Ve = yi] = E[X]
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 Place vertex k + 1 in the set (4 or B) with fewer neighbors,
breaking ties arbitrarily
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Logical formulas

« Boolean variables: variables that can take on values T/F (or 1/0)

« Boolean operations: v, A, and —

« Boolean formula: expression with Boolean variables and ops

SAT (deciding if a given formula has a satisfying assignment) is NP-complete

« Literal: A Boolean variable or its negation. X; Or X;

« Clause: OR of literals. C1 =X VX,V X3

« Conjunctive normal form (CNF): AND of clauses. C; AC, AC3 A C,

(xl VX, vx3)/\(x1 VX, vx3)/\(x2 vx3)/\(x1 VX, vx3)

X; =1, X, = 1, X5 = 0 satisfies the formula.

MAX-SAT: Given a CNF formula, find an assignment satisfying as many clauses
as possible.

« Assume no clause contains x and x (o.w., it is always satisfied).
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S5 | Example 2: MAX-SAT

/Theorem )

Given m clauses, let k; = # literals in clause i, for i € [m].

Let k = ren[m] k;. There is an assignment that satisfies at least
lregm

\_ m(1 — 27%) clauses. )

Proof: Assign values 0 or 1 uniformly and independently to each variable.
e X; = Indicator R.V. for clause i being satisfied.
» X =#of satisfied clauses = X.;crm X;
e Pr[X;=1]=1-27F
Z E[X Z (1-27%)>m(1-275%)
1E[m]
* There exists an a55|gnment satisfying at least that many clauses.
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%‘3‘3‘5} Example 3: Large sum-free subset

« Given a set A of positive integers, a sum-free subset S < 4
contains no three elements i, j,k € S satisfying i + j = k.

« Goal: find as large sum-free subset S as possible.

« Examples: A={2,3,4,5,6, 8, 10}
A={123,4,56,8,9,10, 18}

/Theorem A

Every set A of n positive integers contains

\a sum-free subset of size greater than n/3)
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%gf; Finding a large sum-free subset

A randomized algorithm

1. Letp > max element of 4 be a prime, where p = 3k + 2.
/IThe other choice, 3k + 1, would also work.

Select a number g uniformly at random from [p — 1].

Map each element £ € A to tq mod p.

S < all elements of A that got mappedto{k + 1, ...,2k + 1}.
Return S.

ok W

Need to prove:
e S 1S sum-free

» The expected number of elements from A that are mapped to
{k+1,..,2k+1}is>n/3.
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GS

Kl

% Showing that S Is sum-free

* Letiandj beanytwo elementsinS.
e Sayiismappedto «;jismappedto fB; a, f € [k+ 1,2k + 1]

o o o oo o o o |0 °
1 2 k|lk+1 .a. B.2k+1 3k +1

* Thena=igmodp and B =jgmodp

We need to show that i + j, If present in A4, is not mapped to
|k + 1,2k +1].

[ + j i1s mapped t0 (a + B) mod p

Argue that

e (a+ B) must be greater than 2k + 1.

 If (¢ +pB) > p,then (a + ) mod p Is at most k.
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57| 1he expected size of S

1. Let p > max element of A be a prime, where p = 3k + 2.
2. Select a number g uniformly at random from [p — 1].

3. Map each element t € A to tq mod p.

4. S < all elements of A that got mappedto {k + 1, ...,2k + 1}.

Main idea: Every element t € A gets mapped to £g mod p,
which is a uniformly random element of {1, ..., 3k + 1}.
{k+1,..,2k+ 1}

> 1/3
111, 3k + 1} /

Pr|t is selected to be in S| =
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e‘;%“sf; Example 3: Large sum-free subset

« Given a set A of positive integers, a sum-free subset S < 4
contains no three elements i, j,k € S satisfying i + j = k.

« Goal: find as large as S as possible.

« Examples: A={2,3,4,5,6, 8, 10}
A={1234,56,8,9,10, 18}

/Theorem A

Every set A of n positive integers contains

\a sum-free subset of size greater than n/3

'/
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