

Randomness in Computing

LECTURE 20

Last time

- Probabilistic method
 - The Counting Argument
 - The Expectation Argument
 - Derandomization using conditional expectations

Today

- Probabilistic method
 - Sample and Modify
 - The Second Moment Method

CS 537 The expectation argument

- To prove that an object of required value exists:
- 1. Define a distribution on objects.
- 2. Sample an object from the distribution.
 - Compute the expected value of the sampled object.
- 3. Conclude that there exists an object with value equal to at least (at most) the expectation.

CS 537 Example: Large sum-free subset

- Given a set *A* of positive integers, a sum-free subset $S \subseteq A$ contains no three elements $i, j, k \in S$ satisfying i + j = k.
- **Goal:** find as large sum-free subset *S* as possible.
- **Examples:** $A = \{2, 3, 4, 5, 6, 8, 10\}$

 $A = \{1, 2, 3, 4, 5, 6, 8, 9, 10, 18\}$

Theorem

Every set A of n positive integers contains a sum-free subset of size greater than n/3.

CS 537

Finding a large sum-free subset

Algorithm

- 1. Let p > max element of A be a prime, where p = 3k + 2. //The other choice, 3k + 1, would also work.
- 2. Select a number q uniformly at random from [p 1].
- 3. Map each element $t \in A$ to $tq \mod p$.
- 4. $S \leftarrow$ all elements of *A* that got mapped to $\{k + 1, \dots, 2k + 1\}$.
- 5. Return S.

Need to prove:

- *S* is sum-free
- The expected number of elements from *A* that are mapped to $\{k + 1, ..., 2k + 1\}$ is > n/3.

CS 537 Showing that *S* is sum-free

- Let *i* and *j* be any two elements in *S*.
- Say *i* is mapped to α ; *j* is mapped to β ; α , $\beta \in [k + 1, 2k + 1]$

- Then $\alpha = iq \mod p$ and $\beta = jq \mod p$
- We need to show that i + j, if present in A, is not mapped to [k + 1, 2k + 1].
- i + j is mapped to $(\alpha + \beta) \mod p$

Argue that

- $(\alpha + \beta)$ must be greater than 2k + 1.
- If $(\alpha + \beta) > p$, then $(\alpha + \beta) \mod p$ is at most *k*.

Sofya Raskhodnikova; Randomness in Computing; based on slides by Surender Baswana

CS 537 The expected size of **S**

- 1. Let $p > \max$ element of A be a prime, where p = 3k + 2.
- 2. Select a number q uniformly at random from [p 1].
- 3. Map each element $t \in A$ to $tq \mod p$.
 - S \leftarrow all elements of A that got mapped to $\{k + 1, \dots, 2k + 1\}$.

Main idea: Every element $t \in A$ gets mapped to $tq \mod p$, which is a uniformly random element of $\{1, \dots, 3k + 1\}$. $\Pr[t \text{ is selected to be in } S] = \frac{|\{k + 1, \dots, 2k + 1\}|}{|\{1, \dots, 3k + 1\}|} > 1/3$

Sofya Raskhodnikova; Randomness in Computing; based on slides by Surender Baswana

CS 537 Example: Large sum-free subset

- Given a set *A* of positive integers, a sum-free subset $S \subseteq A$ contains no three elements $i, j, k \in S$ satisfying i + j = k.
- Goal: find as large as *S* as possible.
- **Examples:** $A = \{2, 3, 4, 5, 6, 8, 10\}$

$$A = \{1, 2, 3, 4, 5, 6, 8, 9, 10, 18\}$$

Theorem

Every set A of n positive integers contains a sum-free subset of size greater than n/3.

CS 537 Sample and Modify

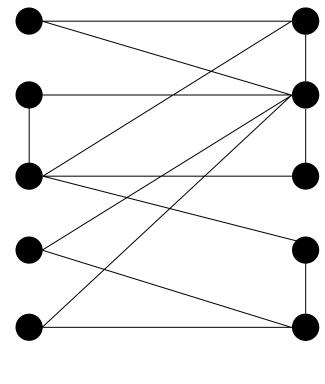
- To prove that an object of required value exists:
- 1. Define a distribution on objects.
- 2. Sample an object from the distribution.
- *3. Modify the sampled object.*
 - Compute the *expected* value of the modified object.
- 4. Conclude that there exists an object with value equal to at least (at most) the expectation.

CS Example: Finding an independent set

An **independent set** in an undirected graph G is a set of nodes that includes at most one endpoint of every edge.

• What is the size of the largest independent set in this graph?

Finding a largest independent set in a given graph is NP-hard.



independent set

Example: a large independent set

Theorem

Let G be a connected graph with n nodes and m edges.

Then G has an independent set of size $\geq \frac{n^2}{4m}$.

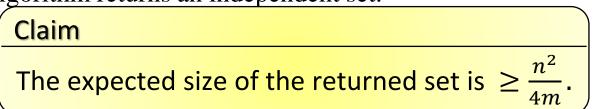
Proof: Let $d = \frac{2m}{n}$ be the average degree in *G*.

Since G is connected, $d \ge 1$.

Algorithm

- 1. Delete each node in *G* (together with adjacent edges) independently w.p. 1 1/d.
- 2. For each remaining edge: remove it and one (arbitrary) adjacent node.
- 3. Output remaining nodes.

Analysis: Algorithm returns an independent set.



Example: a large independent set

Claim

The expected size of the returned set is $\geq \frac{n^2}{4m}$.

Proof: Recall: $d = \frac{2m}{n}$ is the average degree in *G*. • Let *X* = the number of nodes that remain after Step 1.

$$\mathbb{E}[X] = n \cdot \frac{1}{d}$$

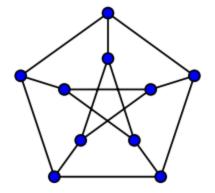
- Let Y = the number of edges that remain after Step 1. An edge remains iff both of its endpoints remain, i.e. w.p. $1/d^2$. $\mathbb{E}[Y] = m \cdot \frac{1}{d^2} = \frac{nd}{2} \cdot \frac{1}{d^2} = \frac{n}{2d}$
- Step 2 removes at most *Y* nodes.
- Let Z = the number of nodes in the output: $Z \ge X Y$

$$\mathbb{E}[Z] \ge \mathbb{E}[X] - \mathbb{E}[Y] = \frac{n}{d} - \frac{n}{2d} = \frac{n}{2d} = \frac{n}{2} \cdot \frac{n}{2m} = \frac{n^2}{4m}$$

11/12/2024

The **girth** of an undirected graph G is the length of the shortest cycle contained in G.

• What is the girth of this graph?



Ex. 2: Dense graphs with large girth

Theorem

 \forall integer $k \ge 3$, for sufficiently large n, there is a graph with n nodes, at least $\frac{n^{1+1/k}}{4}$ edges and girth at least k.

Proof:

Algorithm

- 1. Sample a graph $G \sim G_{n,p}$ with $p = n^{1/k-1}$.
- 2. Delete an (arbitrary) edge in *G* from each cycle of length $\leq k 1$.
- 3. Return G.

Analysis: *G* has *n* nodes and girth at least *k*.

• Let X = number of edges in the graph sampled in Step 1.

Sample a graph G ~ G_{n,p} with p = n^{1/k-1}.
 Delete an edge from each cycle of length ≤ k − 1.

Let X = number of edges in the graph sampled in Step 1. What is the expectation of X?

A. *np*

- **B**. $\binom{n}{2}p$
- **C**. $n^2 p(1-p)$
- D. None of the above.

Ex. 2: Dense graphs with large girth

Theorem

 \forall integer $k \geq 3$, for sufficiently large n, there is a graph with n nodes, at least $\frac{n^{1+1/k}}{4}$ edges and girth at least k.

Proof:

Algorithm

- 1. Sample a graph $G \sim G_{n,p}$ with $p = n^{1/k-1}$.
- 2. Delete an (arbitrary) edge in *G* from each cycle of length $\leq k 1$.
- 3. Return G.

Analysis: *G* has *n* nodes and girth at least *k*.

• Let X = number of edges in the graph sampled in Step 1.

$$\mathbb{E}[X] = p \cdot \binom{n}{2} = n^{1/k-1} \cdot \frac{n(n-1)}{2} = \frac{1}{2} n^{1+1/k} \left(1 - \frac{1}{n}\right)$$
$$\ge \frac{1}{3} n^{1+1/k} \quad \text{for } n \ge 3$$

CS 537

Ex. 2: Dense graphs with large girth

Claim

G has at least $\frac{n^{1+1/k}}{4}$ edges

Sample a graph G ~ G_{n,p} with p = n^{1/k-1}.
 Delete an edge from each cycle of length ≤ k − 1.

Proof: Recall: $\mathbb{E}[X] \ge \frac{1}{3}n^{1+1/k}$ for sufficiently large *n*.

- Let Y = the number of cycles of length $\leq k 1$ in the sampled graph.
- For $i \in [3, k 1]$, there are $\binom{n}{i} \cdot \frac{(i 1)!}{2}$ possible cycles of length *i*, each occurring w.p. p^i

$$\mathbb{E}[Y] = \sum_{i=3}^{k-1} {n \choose i} \cdot \frac{(i-1)!}{2} \cdot p^i \le \sum_{i=3}^{k-1} (np)^i = \sum_{i=3}^{k-1} (n^{1/k})^i < k \cdot n^{\frac{k-1}{k}}$$
$$\le \frac{1}{12} n^{1+1/k} \text{ for sufficiently large } n$$

• Let Z = the number of edges remaining in G: $Z \ge X - Y$

$$\mathbb{E}[Z] \ge \mathbb{E}[X] - \mathbb{E}[Y] > \frac{1}{3}n^{1+1/k} - \frac{1}{12}n^{1+1/k} = \frac{n^{1+1/k}}{4}$$

11/12/2024

CS 537 The 2nd moment method

- Consider a R.V. X with $\mathbb{E}[X] > 0$.
- We want to give an upper bound on Pr[X = 0].
- By Chebyshev, for all a > 0,

$$\Pr[|X - \mathbb{E}[X]| \ge a] \le \frac{\operatorname{Var}[X]}{a^2}$$
$$\Pr[X = 0] \le \Pr[|X - \mathbb{E}[X]| \ge \mathbb{E}[X]] \le \frac{\operatorname{Var}[X]}{(\mathbb{E}[X])^2}$$

Theorem

If X is a random variable with $\mathbb{E}[X] > 0$, then $\Pr[X = 0] \le \frac{\operatorname{Var}[X]}{(\mathbb{E}[X])^2}$

CSThreshold behavior in random graphs537 $G \sim G(n, p)$

For many properties \mathcal{P} , there exists function f(n) s.t.

- 1. when $p \ll f(n)$, probability that G has $\mathcal{P} \to 0$ as $n \to \infty$
- 2. when $p \gg f(n)$, probability that G has $\mathcal{P} \to 1$ as $n \to \infty$

(It holds for all nontrivial monotone properties.)

What is the expected number of *k*-cliques in $G \sim G_{n,p}$?

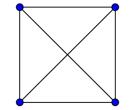
A.
$$\binom{n}{k} \cdot p^k$$

B. $\binom{n}{k} \cdot p^{k(k-1)/2}$

C.
$$\binom{k}{2}\binom{n}{k} \cdot p^k$$

D.
$$n \cdot p^k (1-p)$$

E. None of the above

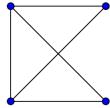


What is the expected number of copies of this graph in $G \sim G_{n,p}$?

A.
$$\binom{n}{4} \cdot p^{6}$$

B. $4\binom{n}{4} \cdot p^{6}$
C. $4\binom{n}{4} \cdot p^{5}(1-p)$
D. $6\binom{n}{4} \cdot p^{5}(1-p)$

E. None of the above



CS 537 Example: having a 4-clique

Theorem

Let
$$G \sim G_{n,p}$$
 and $p^* = \Pr[G \text{ has a } K_4]$.
1. If $p = o(n^{-2/3})$ then $p^* \to 0$ as $n \to \infty$
2. If $p = \omega(n^{-2/3})$ then $p^* \to 1$ as $n \to \infty$

Proof: Let X = number of 4-cliques in G.

For every subset C of 4 nodes, let X_C be the indicator for C being a K_4 .

$$\mathbb{E}[X] = \sum_{C} \mathbb{E}[X_{C}] = \binom{n}{4} \cdot p^{6}$$
1. $p = o(n^{-2/3})$ Markov
 $p^{*} = \Pr[X \ge 1] \stackrel{\checkmark}{\le} \frac{\mathbb{E}[X]}{1} = \mathbb{E}[X]$
 $\leq \frac{n^{4}}{4!} \cdot p^{6} = \frac{n^{4}}{4!} \cdot o(n^{-(2/3) \cdot 6}) = \frac{n^{4}}{4!} \cdot o(n^{-4}) = o(1)$

11/12/2024

CS 537 Example: having a 4-clique

Theorem

Let
$$G \sim G_{n,p}$$
 and $p^* = \Pr[G \text{ has a } K_4]$.
1. If $p = o(n^{-2/3})$ then $p^* \to 0$ as $n \to \infty$
2. If $p = \omega(n^{-2/3})$ then $p^* \to 1$ as $n \to \infty$

Proof: Expected number of 4-cliques: $\mathbb{E}[X] = \binom{n}{4} \cdot p^6$

2.
$$p = \omega(n^{-2/3})$$

$$\mathbb{E}[X] \to \infty \text{ as } n \to \infty$$
Goal: Show $\operatorname{Var}[X] \ll (\mathbb{E}[X])^2$

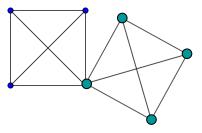
$$\operatorname{Var}[X] = \operatorname{Var}\left[\sum_{C} X_{C}\right] = \sum_{C} \operatorname{Var}[X_{C}] + \sum_{C \neq D} \operatorname{Cov}[X_{C}, X_{D}]$$

$$\operatorname{Var}[X_{C}] = \mathbb{E}[X_{C}^{2}] - (\mathbb{E}[X_{C}])^{2} = \mathbb{E}[X_{C}] - (\mathbb{E}[X_{C}])^{2} = p^{6} - p^{12} \le p^{6}$$

$$\sum_{C} \operatorname{Var}[X_{C}] \le {n \choose 4} \cdot p^{6} = O(n^{4}p^{6})$$

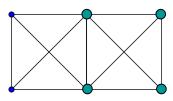
 $Cov(X_C, X_D) \leq \mathbb{E}[X_C \cdot X_D]$

Case 1: $|C \cap D|$ is 0 or 1



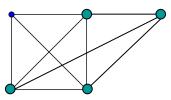
- Corresponding cliques do not share an edge.
- X_C and X_D are independent.
- $Cov(X_C, X_D) = 0$

 $Cov(X_C, X_D) \leq \mathbb{E}[X_C \cdot X_D]$



 $Cov(X_C, X_D) \leq \mathbb{E}[X_C \cdot X_D]$

 $Cov(X_C, X_D) \leq \mathbb{E}[X_C \cdot X_D]$



 $Cov(X_C, X_D) \leq \mathbb{E}[X_C \cdot X_D]$

CS 537 Putting it all together

Theorem

Let
$$G \sim G_{n,p}$$
 and $p^* = \Pr[G \text{ has a } K_4]$.
2. If $p = \omega(n^{-2/3})$ then $p^* \to 1$ as $n \to \infty$

•
$$\operatorname{Var}[X] \leq \operatorname{Var}[\sum_{C} X_{C}] = \sum_{C} \operatorname{Var}[X_{C}] + \sum_{C \neq D} \operatorname{Cov}[X_{C}, X_{D}]$$

= $O(n^{4}p^{6} + n^{6}p^{11} + n^{5}p^{9})$

•
$$\Pr[X = 0] \le \frac{\operatorname{Var}[X]}{\left(\mathbb{E}[X]\right)^2} = O\left(\frac{n^4 p^6 + n^6 p^{11} + n^5 p^9}{n^8 p^{12}}\right)$$

= $O\left(\frac{1}{n^4 p^6} + \frac{1}{n^2 p^6} + \frac{1}{n^3 p^3}\right)$
= $o(1)$ for $p = \omega(n^{-2/3})$