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Randomness in Computing

LECTURE 20 
Last time
• Probabilistic method

• The Counting Argument

• The Expectation Argument

• Derandomization using 

conditional expectations

Today
• Probabilistic method

• Sample and Modify

• The Second Moment Method
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The expectation argument

To prove that an object of required value exists:

1. Define a distribution on objects.

2. Sample an object from the distribution.

• Compute the expected value of the sampled object.

3. Conclude that there exists an object with value equal to 

at least (at most) the expectation.
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Example: Large sum-free subset

• Given a set 𝑨 of positive integers, a sum-free subset 𝑺 ⊆ 𝑨 

contains no three elements 𝒊, 𝒋,𝒌 ∈ 𝑺 satisfying 𝒊 + 𝒋 = 𝒌.

• Goal: find as large sum-free subset 𝑺 as possible.

• Examples: A = {2, 3, 4, 5, 6, 8, 10}

A = {1, 2, 3, 4, 5, 6, 8, 9, 10, 18}
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Theorem

Every set 𝑨 of 𝒏 positive integers contains 
a sum-free subset of size  greater than 𝒏/3.



Finding a large sum-free subset

Need to prove: 

• 𝑺 is sum-free

• The expected number of elements from 𝑨 that are mapped to 

{𝒌 + 𝟏, … , 𝟐𝒌 + 𝟏} is > 𝒏/𝟑.
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1. Let 𝒑 > max element of 𝑨 be a prime, where 𝒑 = 𝟑𝒌 + 𝟐.                           

//The other choice, 𝟑𝒌 + 𝟏,  would also work.

2. Select a number 𝒒 uniformly at random from [𝒑 − 𝟏]. 

3. Map each element 𝒕 ∈ 𝑨 to 𝒕𝒒 mod 𝒑.

4.  𝑺  all elements of 𝑨 that got mapped to {𝒌 + 𝟏, … , 𝟐𝒌 + 𝟏}.

5. Return 𝑺.

Algorithm



Showing that 𝑺 is sum-free

5

• Let 𝒊 and 𝒋 be any two elements in 𝑺.

• Say 𝒊 is mapped to 𝜶; 𝒋 is mapped to 𝜷; 𝜶, 𝜷 ∈ 𝒌 + 𝟏, 2𝒌 + 𝟏

• Then 𝜶 = 𝒊𝒒 𝐦𝐨𝐝 𝒑     and   𝜷 = 𝒋𝒒 𝐦𝐨𝐝 𝒑 

• We need to show that 𝒊 + 𝒋, if present in 𝑨, is not mapped to  

[𝒌 + 𝟏, 2𝒌 + 𝟏].

• 𝒊 + 𝒋 is mapped to ??

Argue that

• (𝜶 + 𝜷) must be greater than 2𝒌 + 𝟏.

• If (𝜶 + 𝜷) > 𝒑, then (𝜶 + 𝜷) 𝐦𝐨𝐝 𝒑 is at most 𝒌. 

1     2                …               𝒌   𝒌 + 𝟏  …     …     … 𝟐𝒌 + 𝟏            …             3𝒌 + 𝟏 𝜶 𝜷

(𝜶 + 𝜷) 𝐦𝐨𝐝 𝒑 
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The expected size of 𝑺

1. Let  𝒑 > max element of 𝑨 be a prime, where 𝒑 = 𝟑𝒌 + 𝟐. 

2. Select a number 𝒒 uniformly at random from [𝒑 − 𝟏]. 

3. Map each element 𝒕 ∈ 𝑨 to 𝒕𝒒 mod 𝒑.

4.  𝑺  all elements of 𝑨 that got mapped to {𝒌 + 𝟏, … , 𝟐𝒌 + 𝟏}.

Main idea: Every element 𝒕 ∈ 𝑨 gets mapped to 𝒕𝒒 mod 𝒑,      

which is a uniformly random element of {𝟏, … , 𝟑𝒌 + 𝟏}.

Pr 𝒕 is selected to be in 𝑺 =
|{𝒌 + 𝟏, … , 𝟐𝒌 + 𝟏}|

|{𝟏, … , 𝟑𝒌 + 𝟏}|
> 1/3
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Example: Large sum-free subset

• Given a set 𝑨 of positive integers, a sum-free subset 𝑺 ⊆ 𝑨 

contains no three elements 𝒊, 𝒋,𝒌 ∈ 𝑺 satisfying 𝒊 + 𝒋 = 𝒌.

• Goal: find as large as 𝑺 as possible.

• Examples: A = {2, 3, 4, 5, 6, 8, 10}

A = {1, 2, 3, 4, 5, 6, 8, 9, 10, 18}
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Theorem

Every set 𝑨 of 𝒏 positive integers contains 
a sum-free subset of size greater than 𝒏/3.



Sample and Modify

To prove that an object of required value exists:

1. Define a distribution on objects.

2. Sample an object from the distribution.

3. Modify the sampled object.

• Compute the expected value of the modified object.

4. Conclude that there exists an object with value equal to 

at least (at most) the expectation.
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Example: Finding an independent set

An independent set in an undirected graph G is                                

a set of nodes that includes at most one endpoint of every edge.

• What is the size of the largest                                        

independent set in this graph?  

Finding a largest independent set                                        

in a given graph is NP-hard.
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independent set



Example: a large independent set

Proof: Let 𝑑 =
2𝑚

𝑛
 be the average degree in 𝐺.

Since 𝐺 is connected, 𝑑 ≥ 1.

Analysis: Algorithm returns an independent set.
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Theorem

Let 𝐺 be a connected graph with 𝑛 nodes and 𝑚 edges.                          

Then 𝐺 has an independent set of size ≥
𝑛2

4𝑚
.

1. Delete each node in 𝐺 (together with adjacent edges) independently 

w.p. 1 − 1/𝑑.

2. For each remaining edge: remove it and one (arbitrary) adjacent node.

3. Output remaining nodes.

Algorithm

Claim

The expected size of the returned set is  ≥
𝑛2

4𝑚
.



Example: a large independent set

Proof: Recall: 𝑑 =
2𝑚

𝑛
 is the average degree in 𝐺.

• Let 𝑋 = the number of nodes that remain after Step 1.

𝔼 𝑋 = 𝑛 ⋅
1

𝑑
• Let 𝑌 = the number of edges that remain after Step 1.

      An edge remains iff both of its endpoints remain, i.e. w.p. 1/𝑑2.

𝔼 𝑌 = 𝑚 ⋅
1

𝑑2 =
𝑛𝑑

2
⋅

1

𝑑2 =
𝑛

2𝑑
• Step 2 removes at most 𝑌 nodes.

• Let 𝑍 = the number of nodes in the output: 𝑍 ≥ 𝑋 − 𝑌

𝔼 𝑍 ≥ 𝔼 𝑋 − 𝔼 𝑌 =
𝑛

𝑑
−

𝑛

2𝑑
=

𝑛

2𝑑
=

𝑛

2
⋅

𝑛

2𝑚
=

𝑛2

4𝑚
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Claim

The expected size of the returned set is  ≥
𝑛2

4𝑚
.

1. Delete each node w.p. 

1 − 1/𝑑.

2. Remove each edge with 

one adjacent node.



Example 2: Graphs with large girth

The girth of an undirected graph G is the length of the 

shortest cycle contained in G.

• What is the girth of this graph?  
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Ex. 2: Dense graphs with large girth

Proof:

Analysis: 𝐺 has 𝑛 nodes and girth at least 𝑘.

• Let 𝑋 = number of edges in the graph sampled in Step 1.
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Theorem

∀ integer 𝑘 ≥ 3, for sufficiently large 𝑛, there is a graph 

with 𝑛 nodes, at least 
𝑛1+1/𝑘

4
 edges and girth at least 𝑘.

1. Sample a graph 𝐺 ∼ 𝐺𝑛,𝑝 with 𝑝 = 𝑛1/𝑘−1.

2. Delete an (arbitrary) edge in 𝐺 from each cycle of length ≤ 𝑘 − 1.
3. Return 𝐺.

Algorithm



Question

Let 𝑋 = number of edges in the graph sampled in Step 1.

What is the expectation of 𝑋?

A.  𝑛𝑝

B.
𝑛
2

𝑝

C.  𝑛2𝑝 1 − 𝑝

D. None of the above.

11/12/2024

1. Sample a graph 𝐺 ∼ 𝐺𝑛,𝑝 with 𝑝 = 𝑛1/𝑘−1.

2. Delete an edge from each cycle of length ≤ 𝑘 − 1.



Ex. 2: Dense graphs with large girth

Proof:

Analysis: 𝐺 has 𝑛 nodes and girth at least 𝑘.

• Let 𝑋 = number of edges in the graph sampled in Step 1.

𝔼 𝑋 = 𝑝 ⋅
𝑛
2

= 𝑛1/𝑘−1 ⋅
𝑛 𝑛 − 1

2
=

1

2
𝑛1+1/𝑘 1 −

1

𝑛

≥
1

3
𝑛1+1/𝑘 for 𝑛 ≥ 3
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Theorem

∀ integer 𝑘 ≥ 3, for sufficiently large 𝑛, there is a graph 

with 𝑛 nodes, at least 
𝑛1+1/𝑘

4
 edges and girth at least 𝑘.

1. Sample a graph 𝐺 ∼ 𝐺𝑛,𝑝 with 𝑝 = 𝑛1/𝑘−1.

2. Delete an (arbitrary) edge in 𝐺 from each cycle of length ≤ 𝑘 − 1.
3. Return 𝐺.

Algorithm



Ex. 2: Dense graphs with large girth

Proof: Recall: 𝔼 𝑋 ≥
1

3
𝑛1+1/𝑘 for sufficiently large 𝑛.

• Let 𝑌 = the number of cycles of length ≤ 𝑘 − 1 in the sampled graph.

• For 𝑖 ∈ 3, 𝑘 − 1 , there are ? ? ?           possible cycles of length 𝑖,               
each occurring w.p. ? ? ?

𝔼 𝑌 = 

𝑖=3

𝑘−1
𝑛
𝑖

⋅
𝑖 − 1 !

2
⋅ 𝑝𝑖 ≤ 

𝑖=3

𝑘−1

(𝑛𝑝)𝑖 = 

𝑖=3

𝑘−1

(𝑛1/𝑘)𝑖 < 𝑘 ⋅ 𝑛
𝑘−1

𝑘

≤
1

12
𝑛1+1/𝑘 for sufficiently large 𝑛

• Let 𝑍 = the number of edges remaining in 𝐺:   𝑍 ≥ 𝑋 − 𝑌

𝔼 𝑍 ≥ 𝔼 𝑋 − 𝔼 𝑌 >
1

3
𝑛1+1/𝑘 −

1

12
𝑛1+1/𝑘 =

𝑛1+1/𝑘

4
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Claim

𝐺 has at least 
𝑛1+1/𝑘

4
 edges

1. Sample a graph 𝐺 ∼ 𝐺𝑛,𝑝 with 𝑝 = 𝑛1/𝑘−1.

2. Delete an edge from each cycle of length       

≤ 𝑘 − 1.

𝑛
𝑖

⋅
𝑖 − 1 !

2𝑝𝑖



The 2𝐧𝐝 moment method

• Consider a R.V. 𝑋 with 𝔼 𝑋 > 0.

• We want to give an upper bound on Pr 𝑋 = 0 .

• By Chebyshev, for all 𝑎 > 0,

Pr 𝑋 − 𝔼 𝑋 ≥ 𝑎 ≤
Var [𝑋]

𝑎2

Pr 𝑋 = 0 ≤ Pr 𝑋 − 𝔼 𝑋 ≥ 𝔼 𝑋 ≤
Var 𝑋

𝔼 𝑋 2
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Theorem

If 𝑋 is a random variable with 𝔼 𝑋 > 0, then

Pr 𝑋 = 0 ≤
Var 𝑋

𝔼 𝑋 2



Threshold behavior in random graphs
𝑮 ∼ 𝑮(𝒏, 𝒑)

For many properties 𝓟, there exists function 𝑓 𝑛  s.t.

1. when 𝑝 ≪ 𝑓 𝑛 , probability that 𝐺 has 𝓟  → 0 as 𝑛 → ∞

2. when 𝑝 ≫ 𝑓 𝑛 , probability that 𝐺 has 𝓟  → 1 as 𝑛 → ∞

(It holds for all nontrivial monotone properties.)
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Review question

What is the expected number of 𝑘-cliques              

in 𝐺 ∼ 𝐺𝑛,𝑝?

A.
𝑛
𝑘

⋅ 𝑝𝑘

B.
𝑛
𝑘

⋅ 𝑝𝑘(𝑘−1)/2

C.
𝑘
2

𝑛
𝑘

⋅ 𝑝𝑘

D.  𝑛 ⋅ 𝑝𝑘(1 − 𝑝)

E.  None of the above
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Review question

What is the expected number of copies of this 

graph in 𝐺 ∼ 𝐺𝑛,𝑝?

A.
𝑛
4

⋅ 𝑝6

B.  4
𝑛
4

⋅ 𝑝6

C.  4
𝑛
4

⋅ 𝑝5(1 − 𝑝)

D.  6
𝑛
4

⋅ 𝑝5(1 − 𝑝)

E.  None of the above
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Example: having a 4-clique

Proof: Let 𝑋 = number of 4-cliques in 𝐺.

For every subset 𝐶 of 4 nodes,  let 𝑋𝐶  be the indicator for 𝐶 being a 𝐾4.

𝔼 𝑋 = 

𝐶

𝔼 𝑋𝐶 =
𝑛
4

⋅ 𝑝6

1.  𝑝 = 𝑜(𝑛−2/3)

 𝑝∗ = Pr 𝑋 ≥ 1 ≤
𝔼[X]

1
= 𝔼 𝑋

 ≤
𝑛4

4!
⋅ 𝑝6 =

𝑛4

4!
⋅ 𝑜 𝑛−(2/3)⋅6  =

𝑛4

4!
⋅ 𝑜 𝑛−4 = 𝑜(1)
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Theorem

Let 𝐺 ∼ 𝐺𝑛,𝑝 and 𝑝∗ = Pr 𝐺 has a 𝐾4 .

1. If 𝑝 ≪ 𝑛−2/3,     then 𝑝∗ → 0 as 𝑛 → ∞

2. If 𝑝 ≫ 𝑛−2/3,     then 𝑝∗ → 1 as 𝑛 → ∞

= 𝒐 𝑛−2/3

= 𝝎 𝑛−2/3

Markov



Example: having a 4-clique

Proof: Expected number of 4-cliques: 𝔼 𝑋 =
𝑛
4

⋅ 𝑝6

2.  𝑝 = 𝜔(𝑛−2/3)

 𝔼 𝑋 → ∞ as 𝑛 → ∞

   Goal: Show Var 𝑋 ≪ 𝔼 𝑋 2

Var 𝑋 = Var 

𝐶

𝑋𝐶 = 

𝐶

Var 𝑋𝐶 + 

𝐶≠𝐷

Cov[𝑋𝐶 , 𝑋𝐷]

Var 𝑋𝐶 = 𝔼 𝑋𝐶
2 − (𝔼 𝑋𝐶 )2= 𝔼 𝑋𝐶 − (𝔼 𝑋𝐶 )2= 𝑝6 − 𝑝12 ≤ 𝑝6



𝐶

Var 𝑋𝐶 ≤
𝑛
4

⋅ 𝑝6 = 𝑂(𝑛4𝑝6) 
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Theorem

Let 𝐺 ∼ 𝐺𝑛,𝑝 and 𝑝∗ = Pr 𝐺 has a 𝐾4 .

1. If 𝑝 ≪ 𝑛−2/3,     then 𝑝∗ → 0 as 𝑛 → ∞

2. If 𝑝 ≫ 𝑛−2/3,     then 𝑝∗ → 1 as 𝑛 → ∞

= 𝒐 𝑛−2/3

= 𝝎 𝑛−2/3

𝑪𝒐𝒗 𝑌, 𝑍 = 𝔼 𝑌 − 𝜇𝑌 ⋅ 𝑍 − 𝜇𝑍

= 𝔼 𝑌𝑍 − 𝜇𝑌𝜇𝑍 ≤ 𝔼 𝑌𝑍



Bounding the covariance

Case 1: |𝐶 ∩ 𝐷| is 0 or 1

• Corresponding cliques do not share an edge.

•  𝑋𝐶  and 𝑋𝐷 are independent.

•   𝑪𝒐𝒗 𝑿𝑪, 𝑿𝑫 = 𝟎
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𝑪𝒐𝒗 𝑿𝑪, 𝑿𝑫 ≤ 𝔼 𝑿𝑪 ⋅ 𝑿𝑫



Bounding the covariance

Case 2: 𝐶 ∩ 𝐷 = 2

  𝑪𝒐𝒗 𝑿𝑪, 𝑿𝑫 ≤ 𝔼 𝑿𝑪 ⋅ 𝑿𝑫
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𝑪𝒐𝒗 𝑿𝑪, 𝑿𝑫 ≤ 𝔼 𝑿𝑪 ⋅ 𝑿𝑫



Bounding the covariance

Case 3: 𝐶 ∩ 𝐷 = 3

  𝑪𝒐𝒗 𝑿𝑪, 𝑿𝑫 ≤ 𝔼 𝑿𝑪 ⋅ 𝑿𝑫
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𝑪𝒐𝒗 𝑿𝑪, 𝑿𝑫 ≤ 𝔼 𝑿𝑪 ⋅ 𝑿𝑫



Putting it all together

 

• Var 𝑋 ≤ Var σ𝐶 𝑋𝐶 = σ𝐶 Var 𝑋𝐶 + σ𝐶≠𝐷 Cov 𝑋𝐶 , 𝑋𝐷

= O(𝑛4𝑝6 + 𝑛6𝑝11 + 𝑛5𝑝9) 

• Pr 𝑋 = 0 ≤
Var 𝑋

𝔼 𝑋
2
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Theorem

Let 𝐺 ∼ 𝐺𝑛,𝑝 and 𝑝∗ = Pr 𝐺 has a 𝐾4 .

2. If 𝑝 ≫ 𝑛−2/3,     then 𝑝∗ → 1 as 𝑛 → ∞= 𝝎 𝑛−2/3

= O
𝑛4𝑝6 + 𝑛6𝑝11 + 𝑛5𝑝9

𝑛8𝑝12
 

= O
1

𝑛4𝑝6
+

1

𝑛2𝑝6
+

1

𝑛3𝑝3
 

= 𝑜(1) for 𝑝 = 𝝎 𝑛−2/3
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