

Randomness in Computing

LECTURE 21 Last time

- Probabilistic method
 - Sample and Modify
 - The Second Moment Method

Today

- Probabilistic method
 - Conditional Expectation Inequality
 - Lovasz Local Lemma

Last time: Threshold Behavior in $G_{n,p}$

Theorem

Let
$$G \sim G_{n,p}$$
 and $p^* = \Pr[G \text{ has a } K_4]$.
1. If $p = o(n^{-2/3})$ then $p^* \to 0$ as $n \to \infty$
2. If $p = \omega(n^{-2/3})$ then $p^* \to 1$ as $n \to \infty$

Proof: Let X = number of 4-cliques in G.

For every subset C of 4 nodes, let X_C be the indicator for C being a K_4 .

$$\mathbb{E}[X] = \sum_{C} \mathbb{E}[X_{C}] = \binom{n}{4} \cdot p^{6}$$

Conditional Expectation Inequality

Theorem

Let
$$X = \sum_{i \in [n]} X_i$$
, where each X_i is an indicator R.V. Then

$$\Pr[X > 0] \ge \sum_{i \in [n]} \frac{\Pr[X_i = 1]}{\mathbb{E}[X \mid X_i = 1]}$$

• Note that the indicators X_i need not be independent.

Proof: Let
$$Y = \begin{cases} 1/X & \text{if } X > 0; \\ 0 & \text{otherwise.} \end{cases}$$
 Then $XY = \begin{cases} 1 & \text{if } X > 0; \\ 0 & \text{otherwise.} \end{cases}$

 $\Pr[X > 0] = \mathbb{E}[XY]$

Conditional Expectation Inequality

11/14/2024

$_{77}^{5}$ K_4 thm, part 2: Alternative proof

CS 537 Avoiding bad events

- Let B₁ and B₂ be (bad) events over a common probability space.
 Q. If Pr[B₁] < 1 and Pr[B₂] < 1, does it imply Pr[B₁ ∩ B₂] > 0? (Is it possible to avoid both events)?
- A. Not necessarily. E.g., for a single coin flip, let $B_1 = H, B_2 = T$ Then $\Pr[B_1] = \Pr[B_2] = 1/2$. But $\Pr[\overline{B_1} \cap \overline{B_2}] = 0$
- **Q**. What if B_1 and B_2 are independent?
- **A.** Yes. $\Pr[\overline{B_1} \cap \overline{B_2}] = \Pr[\overline{B_1}] \cdot \Pr[\overline{B_2}] > 0$
- Q. What if $\Pr[B_1] < \frac{1}{2}$ and $\Pr[B_2] < \frac{1}{2}$ (but B_1, B_2 are dependent)? A. Yes. By Union Bound, $\Pr[B_1 \cup B_2] \le \Pr[B_1] + \Pr[B_2] < 1$. So, $\Pr[\overline{B_1} \cap \overline{B_2}] > 0$.

CS 537 Lovasz Local Lemma (LLL)

- LLL states that as long as
- 1. bad events B_1, \ldots, B_n have small probability,
- 2. they are not ``too dependent'',

there is a non-zero probability of avoiding all of them.

CS 537 Lovasz Local Lemma (LLL)

• Event *E* is mutually independent from the events $E_1, ..., E_n$ if, for any subset $I \subseteq [n]$, $\Pr[E \mid \bigcap_{i \in I} E_j] = \Pr[E]$.

• A dependency graph for events $B_1, ..., B_n$ is a graph with vertex set [n] and edge set E, s.t. $\forall i \in [n]$, event B_i is mutually independent of all events $\{B_i \mid (i,j) \notin E\}$.

Lovasz Local Lemma

Let B_1, \ldots, B_n be events over a common sample space s.t.

- 1. max degree of the dependency graph of B_1, \dots, B_n is at most d 1
- 2. $\forall i \in [n], \Pr[B_i] \leq p$

If
$$epd \leq 1$$
 then $\Pr[\bigcap_{i \in [n]} \overline{B_i}] > 0$

Different meaning of d than in the book (to correspond to algorithmic LLL).

Example: Points on a circle

11n points are placed on a circle and colored with n different colors, so that each color is applied to exactly 11 points.

Prove: There exists a set of n points, all colored differently, such that no two points in the set are adjacent.

- Solution: Choose one point of each color u.i.r. from 11 points of that color.
- Bad events: B_{ij} for every adjacent pair (i, j), such that $color(i) \neq color(j)$

Application of LLL: edge-disjoint paths

- *n* pairs of users need to communicate using edge-disjoint paths
- $\forall i \in [n]$, pair *i* can choose a path from collection P_i of size *m*.

Theorem

If $\forall i \neq j$, each path in P_i shares edges with at most k paths in P_j and $2enk \leq m$ then there is a way to choose n edge-disjoint paths.

Proof:

- Under the original distribution it is unlikely, but possible to avoid all bad events.
- Can we find a different distribution (specifically, a randomized algorithm) that is likely to avoid all bad events?

CS 537

Canonical special case of LLL: kSAT

- Literal: a variable or its negation
- Clause: OR of literals
- CNF formula: AND of clauses
- *k*CNF: each clause involves *k* distinct variables

E.g. $(x_1 \lor \overline{x_3} \lor x_7 \lor x_{13})$ is a 4CNF clause

- *k*SAT: Is a given a *k*CNF formula satisfiable?
- Notation: n = number of variables, m = number of clauses

CS 537

Canonical special case of LLL: kSAT

- Literal: a variable or its negation
- Clause: OR of literals
- CNF formula: AND of clauses
- *k*CNF: each clause involves *k* distinct variables

E.g. $(x_1 \lor \overline{x_3} \lor x_7 \lor x_{13})$ is a 4CNF clause

- *k*SAT: Is a given a *k*CNF formula satisfiable?
- Notation: n = number of variables, m = number of clauses

Warm up: For each kCNF clause, there are ? possible assignments.

- Only one of them violates the clause. E.g. $x_1 = 0, x_3 = 1, x_7 = 0, x_{13} = 0$
- The remaining $2^k 1$ satisfy it.

Each clause ``forbids'' one particular assignment to a *k*-tuple of variables. Recall from HW: A uniformly random assignment satisfies, in expectation, $m(1-2^{-k})$ clauses.

HW: show how to find such an assignment deterministically.

11/14/2024

Sofya Raskhodnikova; Randomness in Computing; based on Tim Roughgarden's notes

CS Canonical special case of LLL: *k***SAT**

- Notation: n = number of variables, m = number of clauses Observation: If $m < 2^k$, then the formula is satisfiable. Proof:
- Pick a uniformly random assignment.
- Let B_i be the event that clause *i* is violated.