

Randomness in Computing

LECTURE 22 Last time

- Probabilistic method
 - Conditional Expectation Inequality
 - Lovasz Local Lemma

Today

• Algorithmic Lovasz Local Lemma

Consider an algorithm \mathcal{A} for problem \mathcal{P} that, on inputs of length n, uses R(n) random bits, runs in time T(n), and produces the correct YES/NO answer for the given input with probability > 1/2.

Give a deterministic algorithm for $\boldsymbol{\mathcal{P}}$ and analyze its running time.

The running time of your algorithm is

- A. 0(T(n))
- **B.** $O(R(n) \cdot T(n))$
- C. $2^{O(R(n))} \cdot T(n)$
- D. $R(n) \cdot 2^{O(T(n))}$
- E. $2^{O(R(n)+T(n))}$
- F. Larger than all of the above.

CS 537 Lovasz Local Lemma (LLL)

• Event *E* is mutually independent from the events $E_1, ..., E_n$ if, for any subset $I \subseteq [n]$, $\Pr[E \mid \bigcap_{i \in I} E_i] = \Pr[E]$.

• A dependency graph for events $B_1, ..., B_n$ is a graph with vertex set [n] and edge set E, s.t. $\forall i \in [n]$, event B_i is mutually independent of all events $\{B_i \mid (i,j) \notin E\}$.

Lovasz Local Lemma

Let B_1, \ldots, B_n be events over a common sample space s.t.

- 1. max degree of the dependency graph of B_1, \dots, B_n is at most d 1
- 2. $\forall i \in [n], \Pr[B_i] \leq p$

If
$$epd \leq 1$$
 then $\Pr[\bigcap_{i \in [n]} \overline{B_i}] > 0$

Different meaning of d than in the book (to correspond to algorithmic LLL).

Theorem

If $e\left(\binom{k}{2}\binom{n-2}{k-2}+1\right)2^{1-\binom{k}{2}} \le 1$ then edges of K_n can be colored with 2 colors so that there is no monochromatic K_k .

Proof:

CS Canonical special case of LLL: *k***SAT**

- Notation: n = number of variables, m = number of clauses Observation: If $m < 2^k$, then the formula is satisfiable. Proof:
- Pick a uniformly random assignment.
- Let B_i be the event that clause *i* is violated.

CS 537 Statement of LLL for kSAT

- Dependency graph: Vertices correspond to clauses edge (i, j) iff clauses i and j share a variable
 If clause i contains x and clause j contains x̄, it counts as sharing a variable. deg(i) = number of clauses sharing a variable with clause i
- Let $d = 1 + \max_{i} \deg(i)$

Algorithmic Lovasz Local Lemma for kSAT If $d \le 2^{k-3} = \frac{2^k}{8}$ for some kCNF formula ϕ , then ϕ is satisfiable. Moreover, a satisfying assignment can be found in $O(m^2 \log m)$ time with probability at least $1 - 2^{-m}$.

Moser-Tardos Algorithm for LLL

Input: a kCNF formula with clauses C_1, \ldots, C_m on *n* variables and with $d \leq 2^{k-3}$ Global variable

- 1. Let *R* be a random assignment where each variable is assigned 0 or 1 uniformly and independently.
- While some clause C is violated by R, run FIX(C)2.
- 3. **Return** R.

FIX(C)

- 1. Pick new values for k variables in C uniformly and independently and update R.
- 2. While some clause D that shares a variable with C is violated by R, run FIX(D)

D could be C if we chose the same values as before

CS 537 Correctness of Moser-Tardos

Observation

If FIX(C) terminates, then it terminates with an assignment

in which C and all clauses sharing a variable with C are satisfied.

Correctness of Moser-Tardos

Lemma (Correctness)

A call to FIX that terminates does not change any clauses of the formula from satisfied to violated.

Proof: Suppose for contradiction that some call FIX(C) terminated and changed an assignment to clause *D* from satisfied to violated, and consider such bad call that terminated first.

- *D* can't share a variable with *C* by Observation.
- Then randomly reassigning variables of *C* does not affect variables of *D*
- All calls to FIX that the current call made terminated before this call did and, by assumption that this is the first bad call to terminate, could not have spoiled *D*.

Theorem (Correctness)

If Moser-Tardos terminates, it outputs a satisfying assignment.

CS S37 Run time of Moser-Tardos

• Assume: $m \ge 2^k$ (o.w. trivial by other means)

<u> Theorem (Run time)</u>

If $d \leq 2^{k-3}$ then Moser-Tardos terminates after $O(m \log m)$ resampling steps with probability at least $1 - 2^{-m}$.

• Proof idea: Clever way to ``compress'' random bits if the algorithm runs for too long.

Observation 2

If a function $f: A \to B$ is injective (i.e., invertible on its range f(A)) then $|B| \ge |A|$.

• Suppose we stop Moser-Tardos after *T* resampling steps.

Randomness used:

n bits for initial assignment*k* bits for each resampling step

Total: n + Tk bits

• Let A be the set of all choices for n + Tk bits

• Each call to FIX gets recorded as follows: If FIX(*C*) is called by the algorithm

index of the clause *C* on which FIX is called

If FIX(*D*) is a recursive call made by FIX(*C*)

 \mathbf{L} ``index" of the clause D among all clauses that overlap with clause C

- When a call to FIX returns,
 - **0** is written on the transcript

Lemma 1

Function f_T is invertible on all inputs (x_0, y_0) for which Moser-Tardos does not terminate within T steps when run with randomness (x_0, y_0) .

Lemma 2

Length of transcript z_T is at most $m(\lceil \log_2 m \rceil + 2) + T \cdot (k - 1)$.

First, consider *T* such that Moser-Tardos never terminates within *T* resampling steps.

• There is a valid transcript z_T for every choice of the random n + Tk bits needed to run Moser-Tardos

CS 537 Proof of Theorem (continued)

Now, consider *T* such that Moser-Tardos fails to terminate w.p. $\geq \frac{1}{2^m}$ within *T* resampling steps.

• Then f_T is invertible on the set of size $\geq 2^{n+Tk-m}$

Lemma 1

Function f_T is invertible on all inputs (x_0, y_0) for which Moser-Tardos does not terminate within T steps when run with randomness (x_0, y_0) .

Proof:

- The recursion tree is uniquely defined by z_T
- FIX is only called on violated clauses, and each clause has a unique violating assignment.

CS Algorithmic LLL for *k***SAT**

Algorithmic Lovasz Local Lemma for kSAT

If $d \leq 2^{k-3} = \frac{2^k}{8}$ for some *k*CNF formula ϕ , then ϕ is satisfiable.

Moreover, a satisfying assignment can be found in $O(m^2 \log m)$ time with probability at least $1 - 2^{-m}$.

