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Randomness in Computing

LECTURE 22 
Last time
• Probabilistic method

• Conditional Expectation 

Inequality

• Lovasz Local Lemma

Today
• Algorithmic Lovasz Local 

Lemma
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Exercise

Consider an algorithm 𝒜 for problem 𝓟 that, on inputs of length 𝑛, 

uses 𝑅(𝑛) random bits, runs in time 𝑇(𝑛), and produces the correct 

YES/NO answer for the given input with probability > 1/2.

Give a deterministic algorithm for 𝓟 and analyze its running time.

The running time of your algorithm is

A.  O 𝑇 𝑛  

B.  O 𝑅 𝑛 ⋅ 𝑇 𝑛  

C.  2𝑂 𝑅 𝑛 ⋅ 𝑇(𝑛) 

D.  𝑅 𝑛 ⋅ 2𝑂 𝑇 𝑛  

E.  2𝑂 𝑅 𝑛 +𝑇 𝑛

F.  Larger than all of the above.
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Lovasz Local Lemma (LLL)

• Event 𝐸 is mutually independent from the events 𝐸1, … , 𝐸𝑛         
if, for any subset 𝐼 ⊆ [𝑛],

Pr 𝐸 ሩ

𝑗∈𝐼

𝐸𝑗] = Pr[𝐸] .

• A dependency graph for events 𝐵1, … , 𝐵𝑛 is a graph with vertex 

set [𝑛] and edge set 𝐸, s.t. ∀𝑖 ∈ 𝑛 , event 𝐵𝑖 is mutually 

independent of all events 𝐵𝑗 𝑖, 𝑗 ∉ 𝐸}.
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Lovasz Local Lemma
Let 𝐵1, … , 𝐵𝑛 be events over a common sample space s.t.

1. max degree of the dependency graph of 𝐵1, … , 𝐵𝑛 is at most 𝒅 − 𝟏

2.  ∀𝑖 ∈ 𝑛 , Pr 𝐵𝑖 ≤ 𝒑

If 𝒆𝒑𝒅 ≤ 𝟏 then Pr ∋𝑖ځ 𝑛
ഥ𝐵𝑖 > 0 

Different meaning of 𝒅 than in the book 
(to correspond to algorithmic LLL).



Application of LLL

Proof:
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Theorem

If 𝒆 𝒌
𝟐

𝒏−𝟐
𝒌−𝟐

+ 1 2
1− 𝒌

𝟐 ≤ 1 then edges of 𝐾𝑛 can be colored 

with 2 colors so that there is no monochromatic 𝐾𝑘.



Canonical special case of LLL: kSAT

• Notation: 𝑛 = number of variables, 𝑚 = number of clauses

Observation: If  𝑚 < 2𝑘, then the formula is satisfiable.

Proof:

• Pick a uniformly random assignment.

• Let 𝐵𝑖 be the event that clause 𝑖 is violated.
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Statement of LLL for 𝒌SAT

• Dependency graph: Vertices correspond to clauses

edge (𝑖, 𝑗) iff clauses 𝑖 and 𝑗 share a variable 

If clause 𝑖 contains 𝑥 and clause 𝑗 contains ҧ𝑥, it counts as sharing a variable.

deg 𝑖 = number of clauses sharing a variable with clause 𝑖

• Let 𝑑 = 1 + max
𝑖

deg(𝑖)
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Algorithmic Lovasz Local Lemma for 𝑘SAT

If 𝒅 ≤ 𝟐𝒌−𝟑 =
𝟐𝒌

𝟖
 for some 𝑘CNF formula 𝜙, then 𝜙 is satisfiable.

Moreover, a satisfying assignment can be found in 𝑂(𝑚2 log 𝑚) 
time  with probability at least 1 − 2−𝑚.



Moser-Tardos Algorithm for LLL
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1. Let 𝑅 be a random assignment where each variable is 

assigned 0 or 1 uniformly and independently.

2. While some clause 𝐶 is violated by 𝑅, run FIX(𝐶)
3. 𝐑𝐞𝐭𝐮𝐫𝐧 𝑅.

Input: a 𝑘CNF formula with clauses 𝐶1, … , 𝐶𝑚 

on 𝑛 variables and with 𝑑 ≤ 2𝑘−3

1. Pick new values for 𝑘 variables in 𝐶 uniformly and 

independently and update 𝑅.

2. While some clause 𝐷 that shares a variable with 𝐶 is 

violated by 𝑅, run FIX(𝐷)

FIX(𝐶)

Global variable

𝑫 could be 𝑪 if we chose the same values as before



Correctness of Moser-Tardos
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Observation

If FIX(𝐶) terminates, then it terminates with an assignment

in which 𝐶 and all clauses sharing a variable with 𝐶 are satisfied.

MT

FIX

FIX FIXFIX

FIX FIX FIX

FIXFIX

FIX FIX

FIX



Correctness of Moser-Tardos

Proof: Suppose for contradiction that some call FIX(𝐶) terminated and 

changed an assignment to clause 𝐷 from satisfied to violated, and consider 

such bad call that terminated first.

• 𝐷 can’t share a variable with 𝐶 by Observation.

• Then randomly reassigning variables of 𝐶 does not affect variables of 𝐷

• All calls to FIX that the current call made terminated before this call did 

and, by assumption that this is the first bad call to terminate,                   

could not have spoiled 𝐷.
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Lemma (Correctness)

A call to FIX that terminates does not change any 
clauses of the formula from satisfied to violated.

Theorem (Correctness)
If Moser-Tardos terminates, it outputs a satisfying assignment.



Run time of Moser-Tardos

• Assume: 𝑚 ≥ 2𝑘 (o.w. trivial by other means)

• Proof idea: Clever way to ``compress’’ random bits                      

if the algorithm runs for too long.

11/19/2024 Sofya Raskhodnikova; Randomness in Computing

Theorem (Run time)

If 𝒅 ≤ 𝟐𝒌−𝟑 then Moser-Tardos terminates after 𝑂(𝑚 log 𝑚) 
resampling steps with probability at least 1 − 2−𝑚.

Observation 2

If a function 𝑓: 𝐴 → 𝐵 is injective 
(i.e., invertible on its range 𝑓(𝐴))

then 𝐵 ≥ |𝐴|.

Set A Set B

𝒇



Function 𝒇𝑻

• Suppose we stop Moser-Tardos after 𝑇 resampling steps.

Randomness used:

• Let 𝐴 be the set of all choices for 𝑛 + 𝑇𝑘 bits

𝑓𝑇 𝑥0, 𝑦0 = 𝑥𝑇 , 𝑧𝑇
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𝒏 bits for initial assignment

𝒌 bits for each resampling step

𝒏 + 𝑻𝒌 bitsTotal:

initial 
assignment

𝑻𝒌 bits for 
reassignment

assignment 
after 𝑻 

resampling 
steps

transcript 
after 𝑻 

resampling 
steps



Transcript

• Each call to FIX gets recorded as follows:

If FIX 𝐶  is called by the algorithm

If FIX 𝐷  is a recursive call made by FIX 𝐶

• When a call to FIX returns, 

                 is written on the transcript
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𝟏

𝟏

𝟎

index of the clause 𝐶 on which FIX is called

``index’’ of the clause 𝐷 among all clauses that overlap with clause 𝐶



Transcript: example
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MT

FIX(𝐶) FIX 𝐶′ FIX 𝐶′′

FIX(𝐷) FIX 𝐷′ FIX 𝐷′′

FIX(𝐸) FIX 𝐸′ FIX 𝐸′′

FIX(𝐹) FIX 𝐹′

FIX(𝐺)



Run time of Moser-Tardos
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Lemma 1
Function 𝑓𝑇 is invertible on all inputs (𝑥0, 𝑦0) for which Moser-Tardos 
does not terminate within 𝑇 steps when run with randomness (𝑥0, 𝑦0).

Lemma 2
Length of transcript 𝑧𝑇 is at most 𝒎(⌈𝐥𝐨𝐠𝟐 𝒎⌉ + 𝟐) + 𝑻 ⋅ (𝒌 − 𝟏) .



Proof of Theorem

First, consider 𝑇 such that Moser-Tardos never terminates within 𝑇 

resampling steps.

• There is a valid transcript 𝑧𝑇 for every choice of                         

the random 𝑛 + 𝑇𝑘 bits needed to run Moser-Tardos 
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Proof of Theorem (continued)

Now, consider 𝑇 such that Moser-Tardos fails to terminate          

w.p. ≥
1

2𝑚 within 𝑇 resampling steps.

• Then 𝑓𝑇 is invertible on the set of size ≥ 2𝑛+𝑇𝑘−𝑚
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Proof of Lemma 1

Proof:

• The recursion tree is uniquely defined by 𝑧𝑇

• FIX is only called on violated clauses, and each clause has a 

unique violating assignment.
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Lemma 1
Function 𝑓𝑇 is invertible on all inputs (𝑥0, 𝑦0) for which Moser-Tardos 
does not terminate within 𝑇 steps when run with randomness (𝑥0, 𝑦0).



Algorithmic LLL for 𝒌SAT
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Algorithmic Lovasz Local Lemma for 𝑘SAT

If 𝒅 ≤ 𝟐𝒌−𝟑 =
𝟐𝒌

𝟖
 for some 𝑘CNF formula 𝜙, then 𝜙 is satisfiable.

Moreover, a satisfying assignment can be found in 𝑂(𝑚2 log 𝑚) 
time  with probability at least 1 − 2−𝑚.
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