Randomness in Computing

Lecture 23

Last time
• Probabilistic method
 • Lovasz Local Lemma (LLL)
 • Algorithmic LLL

Today
• Probabilistic method
 • Algorithmic LLL
 • Applications of LLL
Algorithmic Lovasz Local Lemma for kSAT

If $d \leq 2^{k-3} = \frac{2^k}{8}$ for some k-CNF formula ϕ, then ϕ is satisfiable.

Moreover, a satisfying assignment can be found in $O(m^2 \log m)$ time with probability at least $1 - 2^{-m}$.

Sofya Raskhodnikova; Randomness in Computing
Moser-Tardos Algorithm for LLL

Input: a kCNF formula with clauses C_1, \ldots, C_m on n variables and with $d \leq 2^{k-3}$

1. Let R be a random assignment where each variable is assigned 0 or 1 uniformly and independently.
2. While some clause C is violated by R, run $\text{FIX}(C)$

$\text{FIX}(C)$

1. Pick new values for k variables in C uniformly and independently and update R.
2. While some clause D that shares a variable with C is violated by R, run $\text{FIX}(D)$

D could be C if we chose the same values as before
Theorem (Correctness)

If Moser-Tardos terminates, it outputs a satisfying assignment.
Run time of Moser-Tardos

- **Assume:** $m \geq 2^k$ (o.w. trivial by other means)

Theorem (Run time)

If $d \leq 2^{k-3}$ then Moser-Tardos terminates after $O(m \log m)$ resampling steps with probability at least $1 - 2^{-m}$.

- **Proof idea:** Clever way to ``compress”” random bits if the algorithm runs for too long.

Observation 2

If a function $f : A \rightarrow B$ is injective (i.e., invertible on its range $f(A)$) then $|B| \geq |A|$.
• Suppose we stop Moser-Tardos after T resampling steps.

Randomness used:

- n bits for initial assignment
- k bits for each resampling step

Total: $n + Tk$ bits

• Let A be the set of all choices for $n + Tk$ bits

$$f_T((x_0, y_0)) = (x_T, z_T)$$
• Each call to FIX gets recorded as follows:
 If FIX(C) is called by the main algorithm
 1

 If FIX(D) is a recursive call made by FIX(C)
 1

• When a call to FIX returns,
 0 is written on the transcript
Lemma 1

Function f_T is invertible on all inputs (x_0, y_0) for which Moser-Tardos does not terminate within T steps when run with randomness (x_0, y_0).

Lemma 2

Length of transcript z_T is at most $m(\lfloor \log_2 m \rfloor + 2) + T \cdot (k - 1)$.
Proof of Theorem

First, consider T such that Moser-Tardos never terminates within T resampling steps.

- There is a valid transcript z_T for every choice of the random $n + Tk$ bits needed to run Moser-Tardos.
Now, consider T such that Moser-Tardos fails to terminate w.p. $\geq \frac{1}{2^m}$ within T resampling steps.

- Then f_T is invertible on the set of size $\geq 2^{n+Tk-m}$
Proof of Lemma 1

Lemma 1

Function f_T is invertible on all inputs (x_0, y_0) for which Moser-Tardos does not terminate within T steps when run with randomness (x_0, y_0).
Algorithmic Lovasz Local Lemma for kSAT

<table>
<thead>
<tr>
<th>Algorithmic Lovasz Local Lemma for kSAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>If $d \leq 2^{k-3} = \frac{2^k}{8}$ for some k CNF formula ϕ, then ϕ is satisfiable.</td>
</tr>
<tr>
<td>Moreover, a satisfying assignment can be found in $O(m^2 \log m)$ time with probability at least $1 - 2^{-m}$.</td>
</tr>
</tbody>
</table>
Lovasz Local Lemma (LLL)

- Event E is mutually independent from the events $E_1, ..., E_n$ if, for any subset $I \subseteq [n]$,
 \[
 \Pr[E \mid \bigcap_{j \in I} E_j] = \Pr[E].
 \]
- A dependency graph for events $B_1, ..., B_n$ is a graph with vertex set $[n]$ and edge set E, s.t. $\forall i \in [n]$, event B_i is mutually independent of all events $\{B_j \mid (i, j) \notin E\}$.

Lovasz Local Lemma

Let $B_1, ..., B_n$ be events over a common sample space s.t.
1. max degree of the dependency graph of $B_1, ..., B_n$ is at most d
2. $\forall i \in [n], \Pr[B_i] \leq p$

If $ep(d + 1) \leq 1$ then $\Pr[\bigcap_{i \in [n]} \overline{B_i}] > 0$
Theorem

If \(e \left(\binom{k}{2} \binom{n}{k-2} + 1 \right) 2^{1 - \binom{k}{2}} \leq 1 \) then edges of \(K_n \) can be colored with 2 colors so that there is no monochromatic \(K_k \).

Proof:
Application 2: edge-disjoint paths

- \(n \) pairs of users need to communicate using edge-disjoint paths
- \(\forall i \in [n] \), pair \(i \) can choose a path from collection \(P_i \) of size \(m \).

Theorem

If \(\forall i \neq j \), each path in \(P_i \) shares edges with at most \(k \) paths in \(P_j \) and \(2enk \leq m \) then there is a way to choose \(n \) edge-disjoint paths.

Proof: