

Randomness in Computing

LECTURE 23 Last time

- Probabilistic method
 - Algorithmic LLL
 - Applications of LLL

Today

- Drunkard's walk
- Markov chains
- Randomized algorithm for 2SAT

CS 537 Drunkard's walk problem

 $p_0 = 0$

11/26/2024

CS Drunkard's walk: probability

$$p_n = 1$$

 $p_0 = 0$

11/26/2024

CS Drunkard's walk: probability

CS Drunkard's walk: probability

Pr[Tipsy goes home | he started at position j] = $\frac{J}{n}$

Pr[Tipsy falls into the river | he started at position j] = $\frac{n-j}{n}$

CS Drunkard's walk: expected time

$$s_{0} = 0$$

$$s_{n} = 0$$

for $j \in [1, n - 1]$: $s_{j} = 1 + \frac{s_{j-1}}{2} + \frac{s_{j+1}}{2}$
 $s_{j} = j(n - j)$

• A (discrete time) stochastic process is a (finite or countably infinite) collection of random variables $X_0, X_1, X_2, ...$

represent evolution of some random process over time

• A discrete time stochastic process is a Markov chain if $\forall t \ge 1$ and \forall values a_0, a_1, \dots, a_t , $\Pr[X_t = a_t | X_{t-1} = a_{t-1}, X_{t-2} = a_{t-2}, \dots, X_0 = a_0]$ $= \Pr[X_t = a_t | X_{t-1} = a_{t-1}]$ $= P_{a_{t-1}, a_t}$ *Markov property or memoryless property*

state spacethe set of values the RVs can take, e.g. 0,1,2, ...states visited by the chain $X_0, X_1, ...$ transition probability from a_{t-1} to a_t P_{a_{t-1},a_t}

Memoryless property:

- X_t depends on X_{t-1} , but not on how the process arrived at state X_{t-1} .
- It does not imply that X_t is independent of X_0, \dots, X_{t-2} (only that this dependency is captured by X_{t-1})

CS S37 Representation: directed weighted graph

- Set of vertices = state space
- Directed edge (i, j) iff $P_{i,j} > 0$; the edge weight is $P_{i,j}$

CS S37 Representation: Transition Matrix

- Entry $P_{i,j}$ in matrix **P** is the transition probability from *i* to *j*
- For all rows *i*, the sum $\sum_{j\geq 0} P_{i,j} = 1$

Let p_j(t) be the probability that the process is at state j at time t.
 By the Law of Total Probability,

$$p_{j}(t) = \sum_{i \ge 0} p_{i}(t-1) \cdot P_{i,j}$$

$$\overline{p(t-1) \cdot (j^{th} \text{ column of } P)}$$

$$p_{i}(t) \quad p_{i}(t) \quad p_{i}(t) \quad p_{i}(t) = p_{i}(t-1) \cdot p_{i}(t)$$

• Let $\overline{p}(t) = (p_0(t), p_1(t), ...)$ be the (row) vector giving the distribution of the chain at time *t*.

$$\bar{p}(t) = \bar{p}(t-1) \boldsymbol{P}$$

- For all $m \ge 0$, we define the *m*-step transition probability $P_{i,j}^m = \Pr[X_{t+m} = j \mid X_t = i]$
- Conditioning on the first transition from *i*, by the Law of Total Probability,

$$P_{i,j}^m = \sum_{k \ge 0} P_{i,k} P_{k,j}^{m-1}$$

Sofya Raskhodnikova; Randomness in Computing

11/26/2024

$$P_{i,j}^m = \sum_{k \ge 0} P_{i,k} P_{k,j}^{m-1}$$

• Let $P^{(m)}$ be the matrix whose entries (i, j) are the *m*-step transitional probabilities $P_{i,j}^m$.

$$\boldsymbol{P}^{(\boldsymbol{m})} = \boldsymbol{P} \cdot \boldsymbol{P}^{(m-1)}$$

By induction on *m*,

$$P^{(m)} = P^m$$

• For all $t \ge 0$ and $m \ge 1$, $\bar{p}(t+m) = \bar{p}(t)P^m$

What is the probability of ending up in state 3 in exactly three steps, starting from state 0?

• We calculate the probability of the four events:

$$P_{0,3}^{3} = \frac{3}{32} + \frac{1}{96} + \frac{1}{16} + \frac{3}{64} = \frac{41}{192}$$

What is the probability of ending up in state 3 after three steps if we start in a uniformly random state?

11/26/2024

CS 537 Application: Algorithm for 2SAT

Recall: A 2CNF formula is an AND of clauses

- Each clause is an OR of literals.
- Each literal is a Boolean variable or its negation.
- E.g. $(x_1 \lor \overline{x_2}) \land (x_2 \lor \overline{x_3}) \land (x_3 \lor \overline{x_4}) \land (x_1 \lor x_4) \land (\overline{x_2} \lor \overline{x_4})$

2SAT Problem (search version): Given a 2CNF formula, find a satisfying assignment if it is satisfiable.

Randomized Algorithm for 2SAT

Input: a 2CNF formula ϕ on *n* variables parameter

- Start with an arbitrary truth assignment, e.g., all 0's.
- Repeat R times, terminating if ϕ is satisfied: 2.
 - a) Choose an arbitrary clause C that is not satisfied.
 - b) Pick a uniformly random literal in C and flip its assignment.
- 3. If a satisfying assignment is found, return it.
- Otherwise, return ``unsatisfiable''.

Example: $\phi = (x_1 \lor \overline{x_2}) \land (x_2 \lor \overline{x_3}) \land (x_3 \lor \overline{x_4}) \land (x_1 \lor x_4) \land (\overline{x_2} \lor \overline{x_4})$

- Initial assignment: $x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0$ ۲
- Unsatisfied clause: $C = (x_1 \lor x_4)$
- Pick x_1 or x_4 and flip its value: $x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1$
- New unsatisfied clause: $C = (x_3 \lor \overline{x_4})$
- Pick x_3 or $\overline{x_4}$ and flip its value: $x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1$ Sofya Raskhodnikova; Randomness in Computing 11/26/2024

Only if φ is satisfiable, but we did not find a satisfying assignment in *R* iterations (steps).

- We will analyze the number of steps necessary.
- Each step can be implemented to run in $O(n^2)$ time, since there are $O(n^2)$ clauses.

CS 537 Analysis of the number of steps

- Let S = a satisfying assignment of ϕ .
- A_i = an assignment to ϕ after *i* steps

• X_i = number of variables that have the same value in A_i and SWhen $X_i = n$, the algorithm terminates with a satisfying assignment. (It could do it before $X_i = n$ if it finds another satisfying assignment.)

• If
$$X_i = 0$$
 then $X_{i+1} = 1$
 $\Pr[X_{i+1} = 1 \mid X_i = 0] = 1$

• If $X_i \in [1, n - 1]$ then A_i disagrees with S on 1 or 2 literals of C1/2 or 1 \longrightarrow $\Pr[X_{i+1} = j + 1 \mid X_i = j] \ge 1/2$ $\Pr[X_{i+1} = j - 1 \mid X_i = j] \le 1/2$

> $X_0, X_1, X_2, ...$ is not necessarily a Markov chain, since the probability of $X_{i+1} > X_i$ depends on whether A_i and S disagree on 1 or 2 literals of C(which could depend on previous choices, not just X_i)

CS 537 Creating a true Markov chain

• Define a Markov Chain $Y_0, Y_1, Y_2, ...$

$$Y_0 = X_0$$

$$\Pr[Y_{i+1} = 1 | Y_i = 0] = 1$$

$$\Pr[Y_{i+1} = j + 1 | Y_i = j] = 1/2$$

$$\Pr[Y_{i+1} = j - 1 | Y_i = j] = 1/2$$

• ``Pessimistic version'' of stochastic process $X_0, X_1, X_2, ...$

The expected time to reach *n* is larger for Y_0, Y_1, Y_2, \dots than for X_0, X_1, X_2, \dots

CS 537 Expected time to reach *n*

 $s_{j} = \text{expected number of steps to reach position } n,$ starting at postion j $s_{0} = s_{1} + 1$ $s_{n} = 0$ for $j \in [1, n - 1]$: $s_{j} = 1 + \frac{s_{j-1}}{2} + \frac{s_{j+1}}{2}$ $s_{j} = n^{2} - j^{2}$ $s_{0} = n^{2}$

2SAT algorithm: correctness

Theorem

If number of steps $\mathbf{R} = 2\mathbf{an}^2$ and ϕ is satisfiable, then the algorithm returns a satisfying assignment with probability at least $1 - 2^{-a}$.

Proof:

- The expected number of steps until ALG finds a satisfying assignment is $\leq n^2$, regardless of starting position.
- Brake *R* into *a* segments of $2n^2$
- Let Z = # steps ALG takes in segment k without completion.

CS 537 Application: Algorithm for 3SAT

• First try: the same algorithm as for 2SAT

Input: a 3CNF formula ϕ on *n* variables parameter

- 1. Start with an arbitrary truth assignment, e.g., all 0's.
- 2. Repeat R times, terminating if ϕ is satisfied:
 - a) Choose an arbitrary clause *C* that is not satisfied.
 - b) Pick a uniformly random literal in *C* and flip its assignment.
- 3. If a satisfying assignment is found, return it.
- 4. Otherwise, return ``unsatisfiable''.
- We want to analyze the number of steps (iterations) necessary.

CS 537 Analysis: What should we change?

- Let S = a satisfying assignment of ϕ .
- A_i = an assignment to ϕ after *i* steps

• X_i = number of variables that have the same value in A_i and SWhen $X_i = n$, the algorithm terminates with a satisfying assignment.

• If
$$X_i = 0$$
 then $X_{i+1} = 1$
 $\Pr[X_{i+1} = 1 \mid X_i = 0] = 1$

• If $X_i \in [1, n-1]$ then A_i disagrees with S on 1 to 3 literals of C $Pr[X_{i+1} = j + 1 \mid X_i = j] \ge 1/3$ $Pr[X_{i+1} = j - 1 \mid X_i = j] \le 2/3$

 X_0, X_1, X_2, \dots is not necessarily a Markov chain