Randomness in Computing

L ECTURE 23
Last time
@3 - Probabilistic method
‘  Algorithmic LLL
§3‘? - Applications of LLL
‘ Today

e Drunkard’s walk
* Markov chains
« Randomized algorithm for 2SAT
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e\;;s?; Drunkard’s walk problem

Tipsy
l | | I| | | | |
I | | | | [ | |
0 j-1  j j+1 n
\/\/
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\/\/
p; = Pr[Tipsy goes home | he started at position j]
pn=1
po =10
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Drunkard’s walk: probability

p; = Pr[Tipsy goes home | he started at position j]
pn =1
Po =0

11/26/2024 Sofya Raskhodnikova; Randomness in Computing



%S} Drunkard’s walk: probability

p; = Pr[Tipsy goes home | he started at position j]

pn =1
Po =0
forallj e [1,n—1]: p; = pjz"l + pj2+1
]
Dj "
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e\;%sf; Drunkard’s walk: probability

Pr[Tipsy goes home | he started at position j] = %

i
Pr[Tipsy falls into the river | he started at position j| = T]
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%@; Drunkard’s walk: expected time

s; = expected number of steps to finish the walk,
starting at postion j
So =0
S, =0

: 11 e, — Sj—1 | Sj+1
forje[l,n—1]: s;=1+ —+=

=jn—)j)
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%55, Markov Chains

A (discrete time) stochastic process is a (finite or countably infinite)
collection of random variables X,, X;, X5, ...

represent evolution of some random process over time

« A discrete time stochastic process is a Markov chain
If vt > 1 and Vvvalues ay, a4, ..., a;,

PriXe = a¢|X;—1 = ar—1, Xe—2 = a5, -

= Pr| X; = a¢|X¢—q1 = ap_4] -~

o Pat—lrat

11/26/2024
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Time-homogeneous
property

JXO = aO]

Markov property or
memoryless property
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%55, Terminology

state space the set of values the RVs can take, e.g. 0,1,2, ...
states visited by the chain X0, X1, -
transition probability from a,_4 t0 a, Pa,_;.a,

Memoryless property:
e X, depends on X;_;, but not on how the process arrived at state X;_;.

It does not imply that X; is independent of X, ..., X;_,
(only that this dependency is captured by X;_,)
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g% Representation: directed weighted graph

 Set of vertices = state space
- Directed edge (i, ) Iff P; ; > 0; the edge weight is P; ;




- Entry P; ; In matrix P is the transition probability from i to j
- Forallrows i, thesum }. ;.o P; j = 1




e;';?, Distribution of states

» Letp;(¢) be the probability that the process is at state j at time .
By the Law of Total Probability,

p;i(t) = z pi(t—1)-P;;
120 p(t — 1) - (j*" column of P)
o Letp(t) = (po(t),p,(t),...) be the (row) vector giving
the distribution of the chain at time t.
p(t) =p(t—1)P
« Forall m = 0, we define the m-step transition probability
Pln} = Pr[Xeym =J | Xy = 1]

 Conditioning on the first transition from i,
by the Law of Total Probability,

P = z P Pt

k=0
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%Sf; Distribution of states at time m

» Let P™ be the matrix whose entries (i, j) are the m-step
transitional probabilities P;";

pm) — p. p(m-1)
By induction on m,
pm = pm
 Forallt=0andm =1,
p(t+m) =p()P™
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a‘;?} Example

What is the probability of ending up in state 3 in exactly three steps,
starting from state 0?

NN EEINN
NP NS
NN




,-‘;’%5} Example

What is the probability of ending up in state 3 in exactly three steps,
starting from state 0? @




%65, Example

» \We calculate the probability of the four events:
»0-1-0-3|Pr=3/32 4
»0-1-3-3|Pr=1/96
»0-3-1-3|Pr=1/16
» 0-3-3-3|Pr=23/64

Wl

» Since they are mutually exclusive,
the total probability is

P3_3+1+1+3_41
03732 "96 16 64 192
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g% Example

] 3
Alternatively, we can calculate P R e e

/ (0,3)

e Vis Do N
738 %4 7%44 %6

Je as a2 o2,




e‘;';sf, Example 2

What is the probability of ending up in state 3 after three steps
If we start in a uniformly random state?
1

Solution:
e Calculate

Answer
1111P3_ 17 47 737 43
4’4’4’ 4 - \192’384°1152’288
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%ﬁf; Application: Algorithm for 2SAT

Recall: A 2CNF formula is an AND of clauses

« Each clause is an OR of literals.

 Each literal i1s a Boolean variable or its negation.

* B9 (g VX)) Ay VX3) A(xs VL) A (xg V) A(Xz V)

2SAT Problem (search version): Given a 2CNF formula,
find a satisfying assignment if it is satisfiable.
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%‘?, Randomized Algorithm for 2SAT

mnput: a 2CNF formula ¢ on n variables [, imeter \

1. Start WithWe.g., all 0’s.
2. Repeat Rtimes, terminating if ¢ Is satisfied:

a) Choose an arbitrary clause C that is not satisfied.

b) Pick a uniformly random literal in C and flip its assignment.
3. If a satisfying assignment is found, return it. 7o

% Otherwise, return “unsatisfiable”. SATISFIED ,' ¢\

Example: ¢ = (x; VX2) A (x2 VX3) A (3 VX)) A (1 Vxg) A (X7 V Xg)
 [nitial assignment: x; = 0,x, = 0,x3 =0,x, =0

« Unsatisfied clause: C = (x; V x4)

o Pick x; orx, and flip itsvalue: x; = 0,x, =0,x3 =0,x, = 1

« New unsatisfied clause: C = (x3 V xg)

o Pick x5 orx,andflipitsvalue: x; =0,x, =0,x3 =1,x, =1
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%Sf, When can the algorithm fail?

* Only If ¢ Is satisfiable, but we did not find a
satisfying assignment in R iterations (steps).

« We will analyze the number of steps necessary.

» Each step can be implemented to run in 0(n?) time,
since there are 0(n?) clauses.
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%S} Analysis of the number of steps

« LetS = a satisfying assignment of ¢.
. A; = an assignment to ¢ after i steps
. X; = number of variables that have the same value in 4; and S

When X; = n, the algorithm terminates with a satisfying assignment.
(It could do it before X; = n if it finds another satisfying assignment.)

« IfX;=0then X;;1 =
Pr[X;;;, =1]|X;=0] =1
- If X; € [1,n — 1] then A; disagrees with S on 1 or 2 literals of C
120r1 ——Pr[X;; 1 =j+1|X;=j]=1/2
PriXjp, =/ —-1[X; =j]=1/2
Xy, X1, X5, ... 1s not necessarily a Markov chain,
since the probability of X;,; > X; depends on

whether A; and S disagree on 1 or 2 literals of C

(which could depend on previous choices, not just X;)
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g*;?f, Creating a true Markov chain

» Define a Markov Chain Yy, Y;, Y, ...
Yy = X,
Pr[Yi;; =1|Y;=0]=1
Pr(Yis; =j+ 1Y =j]1=1/2
Pr(Yis; =j—11Y; =j]1=1/2

« "Pessimistic version’’ of stochastic process Xy, X1, X5, ...

The expected time to reach n is larger for Yy, Y3, Y5, ... than for X, X1, X5, ...

-r

\(\f{ \%\/7 . \/\?n\
\"\)\4\/ ’\)*/\ G )

1
0.5
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g} Expected time to reach n

Tipsy

s; = expected number of steps to reach position n,
starting at postion j

SOZS]_"‘].
S, =0
forje[1,n—1]: —1+j2_1+sj2+1
sj = n® — j*
Sg = n?
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%gf, 2SAT algorithm: correctness

" Theorem )
If number of steps R = 2an? and ¢ is satisfiable, then the algorithm
returns a satisfying assignment with probability at least 1 — 274, )
Proof:

» The expected number of steps until ALG finds a satisfying
assignment is < n?, regardless of starting position.
- Brake R into a segments of 2n?

» Let Z = # steps ALG takes in segment k without completion.
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% Application: Algorithm for 3SAT

» First try: the same algorithm as for 2SAT

mnput: a 3CNF formula ¢ on n variables [ o meter \

1. Start WithWe.g., all 0’s.
2. Repeat Rtimes, terminating if ¢ Is satisfied:

a) Choose an arbitrary clause C that is not satisfied.

b) Pick a uniformly random literal in € and flip its assignment.
3. If a satisfying assignment is found, return it.
% Otherwise, return ~"unsatisfiable”. /

« We want to analyze the number of steps (iterations) necessary.
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%Sf, Analysis: What should we change?

« LetS = a satisfying assignment of ¢.

. A; = an assignment to ¢ after i steps

. X; = number of variables that have the same value in 4; and S
When X; = n, the algorithm terminates with a satisfying assignment.

« IfX; =0then X;,, =
Pr[Xi_|_1 =1 |Xl = O] =1

- IfX; €[1,n—1]then A; disagreeswithSon 1to3 literals of C
PriXjs,=j+1|X;=j]=1/3
PriXi.:=j—1|X;=j] = 2/3

Xy, X1, X5, ... 1s not necessarily a Markov chain
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