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Randomness in Computing

LECTURE 23 
Last time
• Probabilistic method

• Algorithmic LLL

• Applications of LLL

Today
• Drunkard’s walk

• Markov chains

• Randomized algorithm for 2SAT
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Drunkard’s walk problem

𝑝𝑗 = Pr[Tipsy goes home  he started at position 𝑗

𝑝𝑛 = 1
𝑝0 = 0
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Tipsy

0 𝒋 𝒏𝒋 − 𝟏 𝒋 + 𝟏



Drunkard’s walk: probability

𝑝𝑗 = Pr[Tipsy goes home  he started at position 𝑗

𝑝𝑛 = 1
𝑝0 = 0
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Tipsy

0 𝒋 𝒏𝒋 − 𝟏 𝒋 + 𝟏



Drunkard’s walk: probability

𝑝𝑗 = Pr[Tipsy goes home  he started at position 𝑗

𝑝𝑛 = 1
𝑝0 = 0

for all 𝑗 ∈ [1, 𝑛 − 1]:    𝑝𝑗 =
𝑝𝑗−1

2
+

𝑝𝑗+1

2
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0 𝒋 𝒏𝒋 − 𝟏 𝒋 + 𝟏

Tipsy

𝒑𝒋 =
𝒋

𝒏



Drunkard’s walk: probability

Pr[Tipsy goes home  he started at position 𝑗 =
𝑗

𝑛

Pr[Tipsy falls into the river  he started at position 𝑗 =
𝑛 − 𝑗

𝑛
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Tipsy

0 𝒋 𝒏𝒋 − 𝟏 𝒋 + 𝟏



Drunkard’s walk: expected time

𝑠𝑗 = expected number of steps to finish the walk, 

starting at postion 𝑗
𝑠0 = 0
𝑠𝑛 = 0

for 𝑗 ∈ [1, 𝑛 − 1]:   𝑠𝑗 = 1 +
𝑠𝑗−1

2
+

𝑠𝑗+1

2
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0 𝒋 𝒏𝒋 − 𝟏 𝒋 + 𝟏

Tipsy

𝒔𝒋 = 𝒋(𝒏 − 𝒋)



Markov Chains

• A (discrete time) stochastic process is a (finite or countably infinite) 

collection of random variables 𝑋0, 𝑋1, 𝑋2, … 

• A discrete time stochastic process is a Markov chain                                               

if  ∀𝑡 ≥ 1 and ∀values 𝑎0, 𝑎1, … , 𝑎𝑡,

Pr 𝑋𝑡 = 𝑎𝑡 𝑋𝑡−1 = 𝑎𝑡−1, 𝑋𝑡−2 = 𝑎𝑡−2, … , 𝑋0 = 𝑎0

         = Pr[ 𝑋𝑡 = 𝑎𝑡|𝑋𝑡−1 = 𝑎𝑡−1]

         = 𝑃𝑎𝑡−1,𝑎𝑡
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Markov property or 
memoryless property

Time-homogeneous 
property

represent evolution of some random process over time



Terminology

          state space

      states visited by the chain

 transition probability from 𝒂𝒕−𝟏 to 𝒂𝒕

Memoryless property:                                                                        

• 𝑋𝑡 depends on 𝑋𝑡−1, but not on how the process arrived at state 𝑋𝑡−1.

• It does not imply that 𝑋𝑡 is independent of 𝑋0, … , 𝑋𝑡−2                

(only that this dependency is captured by 𝑋𝑡−1)
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𝑿𝟎, 𝑿𝟏, …

𝑷𝒂𝒕−𝟏,𝒂𝒕

the set of values the RVs can take, e.g. 0,1,2, …



• Set of vertices = state space

• Directed edge (𝑖, 𝑗) iff 𝑃𝑖,𝑗 > 0; the edge weight is 𝑃𝑖,𝑗

Representation: directed weighted graph
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• Entry 𝑃𝑖,𝑗 in matrix 𝑷 is the transition probability from 𝑖 to 𝑗

• For all rows 𝑖, the sum σ𝑗≥0 𝑃𝑖,𝑗 = 1

Representation: Transition Matrix
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Distribution of states

• Let 𝑝𝑗 𝑡  be the probability that the process is at state 𝑗 at time 𝑡. 

By the Law of Total Probability,

𝑝𝑗 𝑡 = ෍

𝑖≥0

𝑝𝑖 𝑡 − 1 ⋅ 𝑃𝑖,𝑗

• Let ҧ𝑝 𝑡 = (𝑝0 𝑡 , 𝑝1 𝑡 , … ) be the (row) vector giving              

the distribution of the chain at time 𝑡.
ҧ𝑝 𝑡 = ҧ𝑝 𝑡 − 1  𝑷

• For all 𝑚 ≥ 0, we define the m-step transition probability

𝑃𝑖,𝑗
𝑚 = Pr 𝑋𝑡+𝑚 = 𝑗 𝑋𝑡 = 𝑖]

• Conditioning on the first transition from 𝑖,                                   
by the Law of Total Probability,

𝑃𝑖,𝑗
𝑚 = ෍

𝑘≥0

𝑃𝑖,𝑘𝑃𝑘,𝑗
𝑚−1
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ҧ𝑝 𝑡 − 1 ⋅ (𝒋𝒕𝒉 𝒄𝒐𝒍𝒖𝒎𝒏 𝒐𝒇 𝑷)



Distribution of states at time 𝒎

𝑃𝑖,𝑗
𝑚 = ෍

𝑘≥0

𝑃𝑖,𝑘𝑃𝑘,𝑗
𝑚−1

• Let 𝑷(𝒎) be the matrix whose entries 𝑖, 𝑗  are the 𝒎-step 

transitional probabilities 𝑃𝑖,𝑗
𝑚.

𝑷 𝒎 = 𝑷 ⋅ 𝑷 𝑚−1

     By induction on 𝑚,

𝑷 𝒎 = 𝑷𝒎

• For all 𝑡 ≥ 0 and 𝑚 ≥ 1,
ҧ𝑝 𝑡 + 𝑚 = ҧ𝑝(𝑡)𝑷𝒎
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What is the probability of ending up in state 3 in exactly three steps, 
starting from state 0?

Example
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What is the probability of ending up in state 3 in exactly three steps, 
starting from state 0?

Example
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Example

• We calculate the probability of the four events:

➢ 0 – 1 – 0 – 3 | Pr = 3/32

➢ 0 – 1 – 3 – 3 | Pr = 1/96

➢ 0 – 3 – 1 – 3 | Pr = 1/16

➢ 0 – 3 – 3 – 3 | Pr = 3/64

• Since they are mutually exclusive,                                                

the total probability is

𝑃0,3
3  =

3

32
 +

1

96
 +

1

16
 +

3

64
 =

41

192
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Alternatively, we can calculate 𝑷3

Example
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Example 2

What is the probability of ending up in state 3 after three steps 

if we start in a uniformly random state?

Solution:

• Calculate 
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11/26/2024 Sofya Raskhodnikova; Randomness in Computing





















=

4
1

4
1

2
10

0100
6

1
3

10
2

1
4

30
4

10

P

Answer

0

4

1

2

1

3

1

2

1

6

1

1

4

1

4

3

4

1

1

3

2



Application: Algorithm for 2SAT

Recall: A 2CNF formula is an AND of clauses

• Each clause is an OR of literals.

• Each literal is a Boolean variable or its negation.

• E.g. 𝑥1 ∨ 𝑥2 ∧ 𝑥2 ∨ 𝑥3 ∧ 𝑥3 ∨ 𝑥4 ∧ 𝑥1 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4

2SAT Problem (search version): Given a 2CNF formula, 

find a satisfying assignment if it is satisfiable.
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Randomized Algorithm for 2SAT

Example: 𝜙 = 𝑥1 ∨ 𝑥2 ∧ 𝑥2 ∨ 𝑥3 ∧ 𝑥3 ∨ 𝑥4 ∧ 𝑥1 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4

• Initial assignment: 𝑥1 = 0, 𝑥2 = 0, 𝑥3 = 0, 𝑥4 = 0

• Unsatisfied clause: C = 𝑥1 ∨ 𝑥4

• Pick 𝑥1 or 𝑥4 and flip its value: 𝑥1 = 0, 𝑥2 = 0, 𝑥3 = 0, 𝑥4 = 1

• New unsatisfied clause: C = 𝑥3 ∨ 𝑥4

• Pick 𝑥3 or 𝑥4 and flip its value: 𝑥1 = 0, 𝑥2 = 0, 𝑥3 = 1, 𝑥4 = 1
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1. Start with an arbitrary truth assignment, e.g., all 0’s.

2. Repeat R times, terminating if 𝜙 is satisfied:

a) Choose an arbitrary clause 𝐶 that is not satisfied.

b) Pick a uniformly random literal in 𝐶 and flip its assignment.

3. If a satisfying assignment is found, return it.

4. Otherwise, return ``unsatisfiable’’.

Input: a 2CNF formula 𝜙 on 𝑛 variables parameter



When can the algorithm fail?

• Only if 𝜙 is satisfiable, but we did not find a 

satisfying assignment in 𝑅 iterations (steps).

• We will analyze the number of steps necessary.

• Each step can be implemented to run in 𝑂(𝑛2) time, 

since there are 𝑂 𝑛2  clauses. 
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Analysis of the number of steps

• Let 𝑆 = a satisfying assignment of 𝜙.

•       𝐴𝑖 = an assignment to 𝜙 after 𝑖 steps

•       𝑋𝑖 = number of variables that have the same value in 𝐴𝑖 and 𝑆

When 𝑋𝑖 = 𝑛, the algorithm terminates with a satisfying assignment.

(It could do it before 𝑋𝑖 = 𝑛 if it finds another satisfying assignment.)

• If 𝑋𝑖 = 0 then 𝑋𝑖+1 = 1
Pr 𝑋𝑖+1 = 1 𝑋𝑖 = 0 = 1

• If 𝑋𝑖 ∈ [1, 𝑛 − 1] then 𝐴𝑖 disagrees with 𝑆 on 1 or 2 literals of 𝐶
Pr 𝑋𝑖+1 = 𝑗 + 1 𝑋𝑖 = 𝑗 ≥ 1/2
Pr 𝑋𝑖+1 = 𝑗 − 1 𝑋𝑖 = 𝑗 ≤ 1/2
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1/2 or 1

𝑋0, 𝑋1, 𝑋2, …  is not necessarily a Markov chain, 

 since the probability of 𝑋𝑖+1 > 𝑋𝑖 depends on 

whether 𝐴𝑖 and 𝑆 disagree on 1 or 2 literals of 𝐶 

(which could depend on previous choices, not just 𝑋𝑖)



Creating a true Markov chain

• Define a Markov Chain 𝑌0, 𝑌1, 𝑌2, …
𝑌0 = 𝑋0

Pr 𝑌𝑖+1 = 1 𝑌𝑖 = 0 = 1
Pr 𝑌𝑖+1 = 𝑗 + 1 𝑌𝑖 = 𝑗 = 1/2
Pr 𝑌𝑖+1 = 𝑗 − 1 𝑌𝑖 = 𝑗 = 1/2

• ``Pessimistic version’’ of stochastic process 𝑋0, 𝑋1, 𝑋2, …

The expected time to reach 𝑛 is larger for 𝑌0, 𝑌1, 𝑌2, … than for 𝑋0, 𝑋1, 𝑋2, …
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Expected time to reach 𝒏

𝑠𝑗 = expected number of steps to reach position 𝑛, 

starting at postion 𝑗
𝑠0 = 𝒔𝟏 + 𝟏

𝑠𝑛 = 0

for 𝑗 ∈ [1, 𝑛 − 1]: 𝑠𝑗 = 1 +
𝑠𝑗−1

2
+

𝑠𝑗+1

2

𝑠0 = 𝑛2
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0 𝒋 𝒏

Tipsy

𝒔𝒋 = 𝒏𝟐 − 𝒋𝟐



2SAT algorithm: correctness

Proof: 

• The expected number of steps until ALG finds a satisfying 

assignment is ≤ 𝑛2, regardless of starting position.

• Brake 𝑅 into 𝑎 segments of 2𝑛2

• Let 𝑍 = # steps ALG takes in segment 𝑘 without completion.
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Theorem
If number of steps 𝑹 = 𝟐𝒂𝒏𝟐  and  𝜙 is satisfiable, then the algorithm 
returns a satisfying assignment with probability at least 1 − 2−𝑎.



• First try: the same algorithm as for 2SAT

• We want to analyze the number of steps (iterations) necessary. 

Application: Algorithm for 3SAT
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1. Start with an arbitrary truth assignment, e.g., all 0’s.

2. Repeat R times, terminating if 𝜙 is satisfied:

a) Choose an arbitrary clause 𝐶 that is not satisfied.

b) Pick a uniformly random literal in 𝐶 and flip its assignment.

3. If a satisfying assignment is found, return it.

4. Otherwise, return ``unsatisfiable’’.

Input: a 3CNF formula 𝜙 on 𝑛 variables parameter



Analysis: What should we change?

• Let 𝑆 = a satisfying assignment of 𝜙.

•       𝐴𝑖 = an assignment to 𝜙 after 𝑖 steps

•       𝑋𝑖 = number of variables that have the same value in 𝐴𝑖 and 𝑆

When 𝑋𝑖 = 𝑛, the algorithm terminates with a satisfying assignment.

• If 𝑋𝑖 = 0 then 𝑋𝑖+1 = 1
Pr 𝑋𝑖+1 = 1 𝑋𝑖 = 0 = 1

• If 𝑋𝑖 ∈ [1, 𝑛 − 1] then 𝐴𝑖 disagrees with 𝑆 on  1  or  2   literals of 𝐶
Pr 𝑋𝑖+1 = 𝑗 + 1 𝑋𝑖 = 𝑗 ≥ 1/2
Pr 𝑋𝑖+1 = 𝑗 − 1 𝑋𝑖 = 𝑗 ≤ 1/2
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𝑋0, 𝑋1, 𝑋2, …  is not necessarily a Markov chain

1 to 3

1/3

2/3
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