Lecture 24

Last time
- Probabilistic method
 - Algorithmic LLL
 - Applications of LLL

Today
- Drunkard’s walk
- Markov chains
- Randomized algorithm for 2SAT
Drunkard’s walk problem

$p_j = \Pr[\text{Tipsy goes home } | \text{ he started at position } j]$

$p_n = 1$

$p_0 = 0$
Drunkard’s walk: probability

\[p_j = \Pr[\text{Tipsy goes home} \mid \text{he started at position } j] \]

\[p_n = 1 \]

\[p_0 = 0 \]
Drunkard’s walk: probability

\[p_j = \Pr[\text{Tipsy goes home } \mid \text{he started at position } j] \]

\[
p_n = 1 \\
p_0 = 0
\]

for all \(j \in [1, n - 1] \):

\[
p_j = \frac{p_{j-1}}{2} + \frac{p_{j+1}}{2}
\]

\[
p_j = \frac{j}{n}
\]
Drunkard’s walk: probability

Pr[Tipsy goes home | he started at position j] = $\frac{j}{n}$

Pr[Tipsy falls into the river | he started at position j] = $\frac{n-j}{n}$
Drunkard’s walk: expected time

$s_j = \text{expected number of steps to finish the walk, starting at position } j$

$s_0 = 0$

$s_n = 0$

for $j \in [1, n - 1]$: $s_j = 1 + \frac{s_{j-1}}{2} + \frac{s_{j+1}}{2}$

$s_j = j(n - j)$
Markov Chains

- A (discrete time) **stochastic process** is a (finite or countably infinite) collection of random variables X_0, X_1, X_2, \ldots

- A discrete time stochastic process is a **Markov chain** if $\forall t \geq 1$ and \forall values a_0, a_1, \ldots, a_t,

 $$
 \Pr[X_t = a_t | X_{t-1} = a_{t-1}, X_{t-2} = a_{t-2}, \ldots, X_0 = a_0] = \Pr[X_t = a_t | X_{t-1} = a_{t-1}]
 $$

 $$
 = P_{a_{t-1}, a_t}
 $$

 Markov property or memoryless property

 Time-homogeneous property

 represent evolution of some random process over time
Terminology

state space
the set of values the RVs can take, e.g. 0, 1, 2, ...

states visited by the chain
$X_0, X_1, ...$

transition probability from a_{t-1} to a_t
P_{a_{t-1}, a_t}

Memoryless property:

• X_t depends on X_{t-1}, but not on how the process arrived at state X_{t-1}.
• It does not imply that X_t is independent of $X_0, ..., X_{t-2}$
 (only that this dependency is captured by X_{t-1})
Set of vertices = state space
Directed edge \((i, j)\) iff \(P_{i,j} > 0\); the edge weight is \(P_{i,j}\)
Entry $P_{i,j}$ in matrix P is the transition probability from i to j.

For all rows i, the sum $\sum_{j \geq 0} P_{i,j} = 1$.

$P = \begin{pmatrix}
0 & \frac{1}{4} & 0 & \frac{3}{4} \\
\frac{1}{2} & 0 & \frac{1}{3} & \frac{1}{6} \\
0 & 0 & 1 & 0 \\
0 & \frac{1}{2} & \frac{1}{4} & \frac{1}{4}
\end{pmatrix}$
Distribution of states

• Let $p_i(t)$ be the probability that the process is at state j at time t. By Law of Total Probability,

$$p_j(t) = \sum_{i \geq 0} p_i(t - 1) \cdot P_{i,j}$$

• Let $\overline{p}(t) = (p_0(t), p_1(t), ...) \text{ be the (row) vector giving the distribution of the chain at time } t$.

$$\overline{p}(t) = \overline{p}(t - 1) \cdot P$$

• For all $m \geq 0$, we define the m-step transition probability

$$P_{i,j}^m = \Pr[X_{t+m} = j \mid X_t = i]$$

• Conditioning on the first transition from i, by Law of Total Probability,

$$P_{i,j}^m = \sum_{k \geq 0} P_{i,k} P_{k,j}^{m-1}$$
Distribution of states at time \(m \)

\[
P_{i,j}^m = \sum_{k \geq 0} P_{i,k} P_{k,j}^{m-1}
\]

- Let \(P^{(m)} \) be the matrix whose entries \((i, j)\) are the \(m \)-step transitional probabilities \(P_{i,j}^m \).
 \[
 P^{(m)} = P \cdot P^{(m-1)}
 \]
 By induction on \(m \),
 \[
 P^{(m)} = P^m
 \]
- For all \(t \geq 0 \) and \(m \geq 1 \),
 \[
 \tilde{p}(t + m) = \tilde{p}(t)P^m
 \]
What is the probability of going from state 0 to state 3 in exactly three steps?

\[
P = \begin{pmatrix}
0 & \frac{1}{4} & 0 & \frac{3}{4} \\
\frac{1}{2} & 0 & \frac{1}{3} & \frac{1}{6} \\
0 & 0 & 1 & 0 \\
0 & \frac{1}{2} & \frac{1}{4} & \frac{1}{4}
\end{pmatrix}
\]
What is the probability of going from state 0 to state 3 in exactly three steps?
Example

- We calculate the probability of the four events:

 - $0 - 1 - 0 - 3 \mid \text{Pr} = 3/32$
 - $0 - 1 - 3 - 3 \mid \text{Pr} = 1/96$
 - $0 - 3 - 1 - 3 \mid \text{Pr} = 1/16$
 - $0 - 3 - 3 - 3 \mid \text{Pr} = 3/64$

- Since they are mutually exclusive, the total probability is

 \[
 \text{Pr} = \frac{3}{32} + \frac{1}{96} + \frac{1}{16} + \frac{3}{64} = \frac{41}{192}
 \]
Example

Alternatively, we can calculate P^3

\[
\begin{pmatrix}
3/16 & 7/48 & 29/64 & 41/192 \\
5/48 & 5/24 & 79/144 & 5/36 \\
0 & 0 & 1 & 0 \\
1/16 & 13/96 & 107/192 & 47/192
\end{pmatrix}
\]

and find the entry $(0,3)$
Example 2

What is the probability of ending up in state 3 after three steps if we start in a uniformly random state?

Solution:

- Calculate

\[
\begin{pmatrix}
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{3}{4} & \frac{1}{2} & \frac{1}{6} & \frac{1}{4}
\end{pmatrix} P^3 = \begin{pmatrix}
\frac{17}{192} & \frac{47}{384} & \frac{737}{1152} & \frac{43}{288}
\end{pmatrix}
\]
Recall: A 2CNF formula is an AND of clauses

- Each clause is an OR of literals.
- Each literal is a Boolean variable or its negation.
- E.g. \((x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_3 \lor x_4) \land (x_1 \lor x_4) \land (x_2 \lor x_4)\)

2SAT Problem (search version): Given a 2CNF formula, find a satisfying assignment if it is satisfiable.
Randomized Algorithm for 2SAT

Input: a 2CNF formula ϕ on n variables

1. Start with an arbitrary truth assignment, e.g., all 0’s.
2. Repeat R times, terminating if ϕ is satisfied:
 a) Choose an arbitrary clause C that is not satisfied.
 b) Pick a uniformly random literal in C and flip its assignment.
3. If a satisfying assignment is found, return it.
4. Otherwise, return “unsatisfiable”.

Example: $\phi = (x_1 \lor \overline{x_2}) \land (x_2 \lor \overline{x_3}) \land (x_3 \lor \overline{x_4}) \land (x_1 \lor x_4) \land (\overline{x_2} \lor \overline{x_4})$

- Initial assignment: $x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0$
- Unsatisfied clause: $C = (x_1 \lor x_4)$
- Pick x_1 or x_4 and flip its value: $x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1$
- New unsatisfied clause: $C = (x_3 \lor \overline{x_4})$
- Pick x_3 or $\overline{x_4}$ and flip its value: $x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1$
• Only if ϕ is satisfiable, but we did not find a satisfying assignment in R iterations (steps).

• We will analyze the number of steps necessary.

• Each step can be implemented to run in $O(n^2)$ time, since there are $O(n^2)$ clauses.
Analysis of the number of steps

- Let S = a satisfying assignment of ϕ.
- A_i = an assignment to ϕ after i steps
- X_i = number of variables that have the same value in A_i and S

When $X_i = n$, the algorithm terminates with a satisfying assignment.
(It could do it before $X_i = n$ if it finds another satisfying assignment.)

- If $X_i = 0$ then $X_{i+1} = 1$
 \[\Pr[X_{i+1} = 1 \mid X_i = 0] = 1 \]

- If $X_i \in [1, n - 1]$ then A_i disagrees with S on 1 or 2 literals of C
 \[\Pr[X_{i+1} = j + 1 \mid X_i = j] \geq 1/2 \]
 \[\Pr[X_{i+1} = j - 1 \mid X_i = j] \leq 1/2 \]

X_0, X_1, X_2, \ldots is not necessarily a Markov chain, since the probability of $X_{i+1} > X_i$ depends on whether A_i and S disagree on 1 or 2 literals of C (which could depend on previous choices, not just X_i)
Creating a true Markov chain

- Define a Markov Chain Y_0, Y_1, Y_2, \ldots

 $Y_0 = X_0$

 \[
 \Pr[Y_{i+1} = 1 \mid Y_i = 0] = 1 \\
 \Pr[Y_{i+1} = j + 1 \mid Y_i = j] = 1/2 \\
 \Pr[Y_{i+1} = j - 1 \mid Y_i = j] = 1/2
 \]

- “Pessimistic version” of stochastic process X_0, X_1, X_2, \ldots

The expected time to reach n is larger for Y_0, Y_1, Y_2, \ldots than for X_0, X_1, X_2, \ldots
Expected time to reach n

$s_j = \text{expected number of steps to reach position } n, \text{ starting at position } j$

$s_0 = s_1 + 1$

$s_n = 0$

for $j \in [1, n - 1]$: $s_j = 1 + \frac{s_{j-1}}{2} + \frac{s_{j+1}}{2}$

$s_j = n^2 - j^2$

$s_0 = n^2$
2SAT algorithm: correctness

Theorem
If number of steps $R = 2an^2$ and ϕ is satisfiable, then the algorithm returns a satisfying assignment with probability at least $1 - 2^{-a}$.

Proof:

- The expected number of steps until ALG finds a satisfying assignment is $\leq n^2$, regardless of starting position.
- Brake R into a segments of $2n^2$
- Let $Z = \#$ steps ALG takes in segment k without completion.