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%55; Classification of Markov chains

*  We want to study Markov chains that " 'mix’’ well.

«  We will define Markov chains that avoid some problematic
behaviors: irreducible and aperiodic.

A finite Markov chain is irreducible if its graph representation
consists of one strongly connected component.
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:;';?, Periodicity

« Example: a Markov chain whose states are integers and it moves
to each neighboring state with probability 2.

If the chain starts at 0, when can it be in an even-numbered state?

« A state Is periodic If there exists an integer A > 1 such that

Pr|X;.s =j |X; = j] = 0 unless s is divisible by A ; otherwise, it
IS aperiodic.

« A Markov chain is aperiodic if all its states are aperiodic.

12/3/2024 Sofya Raskhodnikova; Randomness in Computing



%Sf, Fundamental theorem

A stationary distribution of a Markov chain is a probability
distribution 77 such that 7 = 7 P.

(Describes steady state behavior of a Markov chain.)

/~ Fundamental Theorem of Markov Chains (selected items) N\
Every finite, irreducible and aperiodic Markov chain satisfies the following:

1. There is a unique stationary distribution @ = (my, 74, ..., ™), Where
m; > 0foralli € {0,1, ...,n}.

2. Foralli € {0,1,...,n}, the hitting time h;; = 1/m;.

N /

* The hitting time from u to v, denoted h,, ,,, Is the expected time to reach state v
from state wu.
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| Random walks on undirected graphs

.

Given a connected, undirected graph ¢ = (V, E),
define the following Markov chain

» states = vertices of the graph

 from each state v, the chain moves to a uniformly random
neighbor of v

(1
if (u,v) €E
B =+ d(u) if (u, v)
. 0 otherwise

» Observation: This Markov chain is aperiodic iff G isn’t bipartite.
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57| Stationary distribution

« Assume G Is not bipartite.

" Theorem N
A random walk on G has stationary distribution @, where, for all nodes v,
d(v)
T, =
E
N 21E] Y

Proof: 1. Check probabilities sum to 1:
« Since ),y d(v) = 2|E|,

veV vevV

d(v)
1
va ZZ|E| Puv:{d(u) i@ es

0 otherwise

2. Check that
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x| Hitting time, commute time, cover time

» The hitting time from u to v, denoted h,, ,, Is the expected time to
reach state v from state u.

 The commute time between u and v IS hy, ,, + hy, .

* The cover time of agraph ¢ = (V, E) iIs the maximum over v € V
of the expected time for a random walk starting at v to visit all
nodesinV.

12/3/2024 Sofya Raskhodnikova; Randomness in Computing



e;';?, Bound on commute time

Commute Time Lemma W
If (u,v) € E, the commute time h,,,, + hy,,, is at most 2|E]|. J

Proof: Let D = set of 2|E| directed edges {i — j |{i,j} € E}

l J Lo—sn)/

« Random walk on G corresponds to Markov chain with states D,
where state at time ¢ is the directed edge taken by transition t.
1

i j k d@) @

 This Markov Chain has uniform stationary distribution.
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e‘é,?f, Bound on commute time

Commute Time Lemma W
If (u,v) € E, the commute time h,,,, + hy,,, is at most 2|E]|. J

Proof: This Markov Chain has uniform stationary distribution.

u 1% {IIIP ‘allb
» By Fundamental Thm of Markov Chains,
= 2|E]

huauuﬁv
U->V

= expected time to traverse u — v startingatu - v
= expected time to go from v to u and then traverse (u, v)

 But this is only one way to go from v to u to v:
My + My < 2|E|

12/3/2024 Sofya Raskhodnikova; Randomness in Computing



%Sf, Bound on cover time

Cover Time Lemma
The cover time of G with n nodes and m edges is at most 2m(n — 1).

:
)

Proof: Choose a spanning tree T of G and a starting vertex v,.

 Consider the directed tour starting at v, that
traverses each edge of T once in each direction

(by visiting nodes in the order of DFS if T from vy)

* Let vy, vy, ..., Voy_3 be the sequence of nodes
(with repetitions) in the order visited by the tour

[E[# of steps to cover V starting from v]
<IE[# of steps, starting from v, to Visit v, ..., V,,,_3 In that order]

n-3

by linearity of .

expectation - Z hv,;,v,;ﬂ
1=0
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aay| Application: s-t-PATH

Problem: Given an undirected graph G with n nodes and m edges
and two nodes, s and t, determine if G contains a path from s to t¢.

 Can be solved by BFS in O(m + n) time

 This approach requires 2(n) space.

» Today: arandomized algorithm that uses O (log n) space.
Less space than it takes to store a path!

~
f Algorithm for s-t-PATH
1. Start a random walk from s.

2. If the walk reaches t in 2n3 steps, accept; otherwise, reject. J
-
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%%S} Correctness of s-t-PATH algorithm

Theorem
The algorithm uses O (log n) bits and has error probability < 1/2.

— |

Proof: If there is no path, the algorithm correctly rejects.
» Suppose there is an s-t path.

» The expected time to reach t from s is at most the expected cover
time of the connected component, which is, by Cover Lemma is
< 2mn < n3.

« By Markov’s inequality, the probability that the walk takes more
than 2n3 steps to reach ¢ is at most 1/2.

Space analysis: Need to keep

e current position: O(logn) bits

» counter for the number of steps: O (log n) bits
What do we change for bipartite graphs?
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