

Randomness in Computing

LECTURE 26 Last time

- Random walks on graphs
- Algorithm for *s*-*t*-PATH

Today

- Random walks on graphs: cover time (Matthews' Theorem)
- Parrondo's Paradox

Sofya Raskhodnikova; Randomness in Computing; based on slides by Baranasuriya et al.

CS S37 Reminders: Random walks

Given a connected, undirected graph G = (V, E), define the following Markov chain

- states = vertices of the graph
- from each state *v*, the chain moves to a uniformly random neighbor of *v*

$$P_{uv} = \begin{cases} \frac{1}{d(u)} & \text{if } (u, v) \in E\\ 0 & \text{otherwise} \end{cases}$$

CS Hitting time, commute time, cover time

- The hitting time from u to v, denoted $h_{u,v}$, is the expected time to reach state v from state u.
- The commute time between u and v is $h_{u,v} + h_{v,u}$.
- The cover time of a graph G = (V, E) is the maximum over $v \in V$ of the expected time for a random walk starting at v to visit all nodes in V.

Commute Time Lemma

If $(u, v) \in E$, the commute time $h_{u,v} + h_{v,u}$ is at most 2|E|.

Cover Time Lemma

The cover time of G with n nodes and m edges is at most 2m(n-1).

CS Better bound on cover time

Cover Time Theorem (Matthew's Theorem) The cover time C_G of a graph G = (V, E) with n nodes is $C_G \leq H(n-1) \cdot \max_{\substack{u,v \in V: u \neq v}} h_{u,v}$.

Proof: Consider a random walk starting from a vertex *u*.

- Let Z_1, \ldots, Z_n be a uniformly random permutation of V. Idea 1: Use phases, like in Coupon Collector
- Let T_j for $j \in [n]$ be the first time when all vertices in $Z_1, ..., Z_j$ have been visited (``collected'')
- Let L_j for $j \in [n]$ be the last vertex from $\{Z_1, ..., Z_j\}$ to have been collected **By Principle of Deferred Decisions**

Idea 2: Since $Z_1, ..., Z_n$ is a uniformly random permutation, L_j is equally likely to be any of the vertices in $\{Z_1, ..., Z_j\}$

CS 537 Parrondo's Paradox

Two losing games can be combined to make a winning game

• For a coin c, let p_c be the probability of HEADS,

 $q_c = 1 - p_c$ be the probability of TAILS

• We consider repeated games.

One round of **Game A** with coin *a*

Toss the coin

- win \$1 if HEADS
- lose \$1 if TAILS
- Example: if $p_a = 0.49$, the expected loss is

Two losing games can be combined to make a winning game

- For a coin c, let p_c be the probability of HEADS, $q_c = 1 - p_c$ be the probability of TAILS
- We repeatedly flip two coins

One round of **Game B** with coins *b* and *c*

Let W = # of wins in previous rounds; W - L = total winnings

L = of losses in previous rounds *so far (can be negative)*

- If W L is divisible by 3, flip coin b; else flip coin c.
- win \$1 if HEADS
- lose \$1 if TAILS
- Example: $p_b = 0.09, p_c = 0.74$

If you flip coin *b* one third of the time *~*

$$p_{win} = \frac{1}{3} \cdot \frac{9}{100} + \frac{2}{3} \cdot \frac{74}{100} = \frac{157}{300} > \frac{1}{2}$$

Sofya Raskhodnikova; Randomness in Computing

But you don't!

CS 537 Analysis of Game B

• For a coin c, let p_c be the probability of HEADS, $q_c = 1 - p_c$ be the probability of TAILS

Idea: Combine rounds into phases, each lasting until we win or lose \$3Idea 2: To analyze a phase, pair up winning and losing sequences

- Consider any sequence of states that starts at 0 and ends at 3 before reaching -3.
- f(s) is created by negating every number starting from the last 0
- Then f(s) is 1-to1.

Lemma (for Game B)

For any sequence *s* of states that starts at 0 and ends at 3 before reaching -3:

$$\frac{\Pr[s \text{ occurs}]}{\Pr[f(s) \text{ occurs}]} = \frac{p_b \cdot p_c^2}{q_b \cdot q_c^2}.$$

Lemma (for Game B)

For any sequence *s* of moves that starts at 0 and ends at 3 before reaching -3:

 $\frac{\Pr[s \text{ occurs}]}{\Pr[f(s) \text{ occurs}]} = \frac{p_b \cdot p_c^2}{q_b \cdot q_c^2}.$

• Let *S* be the set of all sequences of states that start at 0 and end at 3 before reaching -3. $\frac{\Pr[3 \text{ is reached before } -3]}{\Pr[-3 \text{ is reached before } 3]} = \frac{\sum_{s \in S} \Pr[s \text{ occurs}]}{\sum_{s \in S} \Pr[f(s) \text{ occurs}]}$

• Example:
$$p_b = 0.09, p_c = 0.74$$

We get $\frac{12,321}{15,375} < 1$: more likely to lose than win

Sofya Raskhodnikova; Randomness in Computing

CS 537 Combining the two games

Two losing games can be combined to make a winning game

One round of **Game C** with coins *a*, *b*, *c*

Flip a fair coin

- Play Game A if HEADS
- Play Game B if TAILS
- Example: if $p_a = 0.49$, the expected loss is