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Randomness in Computing

LECTURE 27
Last time
• Stationary distributions

• Random walks on graphs

• Algorithm for 𝑠-𝑡-PATH

Today
• Sublinear algorithms

• Differential privacy

Sofya Raskhodnikova;Randomness in Computing; based on slides by Baranasuriya et al.



A Sublinear-Time Algorithm
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Goal: Fundamental Understanding 

of Sublinear Computation

• What computational tasks?

• How to measure quality of approximation?

• What type of access to the input?

• Can we make our computations robust       
(e.g., to noise or erased data)?



Fundamental Computational Tasks

• Property testing

• need to answer YES or NO

 intuition: only require correct answers on two sets of 

instances that are very different from each other

• Learning

• need an approximate representation of an object

 input is from a given class (or is close to it)

• Classical approximation

• need to compute a value

output should be close to the desired value
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[Rubinfeld Sudan, Goldreich Goldwasser Ron]

Property Testing: Definition

Property Tester

Close to YES

Far from

YES

YES

Reject with 
probability    2/3 

Don’t care 

Accept with 
probability ≥ 𝟐/𝟑



Randomized Algorithm

YES Accept with 
probability ≥ 𝟐/𝟑

Reject with 
probability     2/3 

NO



far = differs in many places휀- (≥ 휀 fraction of places)

휀



Example: Lipschitz Testing [Jha R]
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Input: a list of 𝑛 numbers  𝑥1 , 𝑥2 , … , 𝑥𝑛
• A list of numbers is Lipschitz if 𝑥𝑖+1 − 𝑥𝑖 ≤ 1 for all 𝑖.

• Question: Is the list Lipschitz?

Requires reading entire list: (𝑛) time 

• Approximate version: Is the list Lipschitz or 휀-far from Lipschitz?

(An 휀 fraction of 𝑥𝑖 ’s have to be changed to make it Lipschitz.)

Our result: O((log 𝑛)/휀) time 
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Lipschitz Testing: Attempts
1. Test:  Pick a random 𝑖 and reject if 𝑥𝑖+1 − 𝑥𝑖 > 1

Fails on:                                                                               ← 1/2-far from Lipschitz

2. Test:  Pick random 𝑖 < 𝑗 and reject if 𝑥𝑗 − 𝑥𝑖 > 𝑗 − 𝑖

Fails on: ← 1/2-far from Lipschitz
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Is a list Lipschitz or 휀-far from Lipschitz?

Idea:  Associate positions in the list with vertices of the directed line.

Construct a graph (2-spanner)

• by  adding a few “shortcut” edges (𝑖, 𝑗) for 𝑖 < 𝑗

• where each pair of vertices is connected by a path of length at most 2

……

≤ 𝑛 log 𝑛 edges

1    2     3  …                                                    𝒏-1 𝒏

[Bhattacharyya Grigorescu Jung R Woodruff]



Is a list Lipschitz or 휀-far from Lipschitz?

3             2            2            4            6            6             7
Analysis:

• Call a pair (𝑖, 𝑗) violated if 𝑥𝑗 − 𝑥𝑖 > 𝑗 − 𝑖, and satisfied otherwise.

• If 𝑖 is an endpoint of a violated edge, call 𝑥𝑖 bad. Otherwise, call it good.

Proof: Consider any two good numbers, xi and xj. 

They are connected by a path of (at most) two satisfied edges 𝑖, 𝑘 , (𝑘, 𝑗)

⇒ 𝑥𝑘 − 𝑥𝑖 ≤ 𝑘 − 𝑖 and 𝑥𝑗 − 𝑥𝑘 ≤ 𝑗 − 𝑘

⇒ 𝑥𝑗 − 𝑥𝑖 ≤ 𝑥𝑗 − 𝑥𝑘 + 𝑥𝑘 − 𝑥𝑖 ≤ 𝑗 − 𝑘 + 𝑘 − 𝑖 = 𝑗 − 𝑖
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Claim 1. All pairs of  good numbers are satisfied.

Test

Pick a random edge (𝑖, 𝑗) from the 2-spanner and reject if 𝑥𝑗 − 𝑥𝑖 > 𝑗 − 𝑖.



Is a list Lipschitz or 휀-far from Lipschitz?

3             2            2            4            6            6             7
Analysis:

• Call a pair (𝑖, 𝑗) violated if 𝑥𝑗 − 𝑥𝑖 > 𝑗 − 𝑖, and satisfied otherwise.

• If 𝑖 is an endpoint of a violated edge, call 𝑥𝑖 bad. Otherwise, call it good.

Proof: If a list is 휀-far from Lipschitz, it has ≥ 휀𝑛 bad numbers.  (Claim 1)

• Each violated edge contributes 2 bad numbers.  

• 2-spanner has  ≥
𝑛

2
violated edges out of 𝑛 log 𝑛.
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xi                                                                                               xj

xk

Claim 1. All pairs of  good numbers are satisfied.

Test

Pick a random edge (𝑖, 𝑗) from the 2-spanner and reject if 𝑥𝑗 − 𝑥𝑖 > 𝑗 − 𝑖.

Claim 2. An 휀-far list violates ≥ 휀/(2 log 𝑛) fraction of edges in 2-spanner.



Is a list Lipschitz or 휀-far from Lipschitz?

3             2            2            4            6            6             7
Analysis:

• Call a pair (𝑖, 𝑗) violated if 𝑥𝑗 − 𝑥𝑖 > 𝑗 − 𝑖, and satisfied otherwise.

Sample 
4 log 𝑛

edges (xi ,xj) from the 2-spanner and reject if 𝑥𝑗 − 𝑥𝑖 > 𝑗 − 𝑖. 

Guarantee: All Lipschitz lists are accepted.

All lists that are 휀-far from Lipschitz are rejected with probability ≥ 2/3.

Time: O((log n)/²)               
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Claim 2. An 휀-far list violates ≥ 휀/(2 log 𝑛) fraction of edges in 2-spanner.

Algorithm
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xi                                                                                               xj

xk

Test

Pick a random edge (𝑖, 𝑗) from the 2-spanner and reject if 𝑥𝑗 − 𝑥𝑖 > 𝑗 − 𝑖.



Testing if a List is Lipschitz: Summary

• [Jha R]:

We can determine if a list of 𝑛 numbers is

Lipschitz or 휀-far from Lipschitz

in O
log 𝑛

time. 

• [Jha R, Blais R Yaroslavtsev, Chakrabarty Dixit Jha Seshadhri]:

This cannot be improved.

1
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Testing Properties of High-Dimensional Functions

In polylogarithmic time, we can test a  large class of 
properties of functions 𝑓: 1, … , 𝑛 𝑑 → ℝ, including:

1
2

x y• Lipschitz property [Jha R]

• Monotonicity [Goldreich Goldwasser Lehman Ron, 

Dodis Goldreich Lehman R Ron Samorodnitsky]

• Bounded-derivative properties 
[Chakrabarty Dixit Jha Seshadhri]

• Unateness
[Baleshzar Chakrabarty Pallavoor R Seshadhri]



Sublinear Algorithms: Summary

• Many problems admit sublinear-time algorithms

• Algorithms are often simple

• Analysis requires creation of interesting combinatorial, 

geometric and algebraic tools

• Unexpected connections to other areas

• Many open questions



Private Data Analysis

Individuals Data AnalystsCurator

x =

𝑥𝑑

𝑥𝑑−1

𝑥3

𝑥2

𝑥1




(Queries)

Answers

Typical examples: census, medical studies, what big 

companies want to publish about our data…

Two conflicting goals
 Protect privacy of individuals

• Differential privacy [Dwork McSherry Nissim Smith 06]

 Give accurate answers



Neighboring Datasets

Two datasets 𝑥, 𝑥′ are neighbors if they differ in one person’s data.

𝑥𝑑

𝑥𝑑−1

𝑥3

𝑥2

𝑥1

𝑥𝑑

𝑥𝑑−1

𝒙′𝟑

𝑥2

𝑥1

 

𝑥 𝑥′



Differential Privacy [Dwork McSherry Nissim Smith]

𝑥𝑑

𝑥𝑑−1

𝑥3

𝑥2

𝑥1

𝑥𝑑

𝑥𝑑−1

𝒙′𝟑

𝑥2

𝑥1

 

𝑥 𝑥′

Privacy Definition

An algorithm A is 𝝐-differentially private if 

for all pairs of neighbors 𝒙, 𝒙′ and all sets of answers S:

𝐏𝐫 𝑨 𝒙 ∈ 𝑺 ≤ 𝒆𝝐 𝐏𝐫 𝑨 𝒙′ ∈ 𝑺



Properties of Differential Privacy

• Composition: 

If algorithms 𝐴1 and 𝐴2 are 𝜖-differentially private then

algorithm that outputs (𝐴1 𝑥 , 𝐴2(𝑥)) is 2𝜖-differentially private

• Meaningful in the presence of arbitrary external information
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Output Perturbation

Frameworks for designing 

differentially private algorithms



Output Perturbation

Individuals Data AnalystsCurator

x =

𝑥𝑑

𝑥𝑑−1

𝑥3

𝑥2

𝑥1



Evaluate 𝒇(𝒙)

A 𝒙 = 𝒇 𝒙 +
𝒏𝒐𝒊𝒔𝒆



Global Sensitivity Framework

Global sensitivity of a function 𝑓 is

Example: 𝑥1, … , 𝑥𝑛 ∈ 0,1 , ave 𝑥 =
𝑥1+⋯+𝑥𝑛

𝑛

• 𝐺𝑆ave = ?

𝑮𝑺𝒇 = max
𝐧𝐞𝐢𝐠𝐡𝐛𝐨𝐫𝑠 𝑥,𝑥′

𝑓 𝑥 − 𝑓 𝑥′ .



Global Sensitivity Framework

Global sensitivity of a function 𝑓 is

Example: 𝑥1, … , 𝑥𝑛 ∈ 0,1 , ave 𝑥 =
𝑥1+⋯+𝑥𝑛

𝑛

• 𝐺𝑆ave = 1/𝑛

𝑮𝑺𝒇 = max
𝐧𝐞𝐢𝐠𝐡𝐛𝐨𝐫𝑠 𝑥,𝑥′

𝑓 𝑥 − 𝑓 𝑥′ .

Theorem [Dwork McSherry Nissim Smith]

If 𝐴 𝑥 = 𝑓 𝑥 + 𝐿𝑎𝑝
𝐺𝑆𝑓

𝜖
then 𝐴 is 𝜖-differentially private.



Global Sensitivity: Noise Distribution

Laplace distribution Lap(𝜆) has density ℎ 𝑦 =
1

2𝜆
⋅ 𝑒−

𝑦

𝜆

(mean 0, standard deviation 2 ⋅ 𝜆)

Laplace Mechanism Theorem [Dwork McSherry Nissim Smith]

If 𝐴 𝑥 = 𝑓 𝑥 + 𝐿𝑎𝑝
𝐺𝑆𝑓

𝜖
then 𝐴 is 𝜖-differentially private.

Sliding Property of 𝐿𝑎𝑝
𝐺𝑆𝑓

𝜖

for all 𝑦, 𝛿:
ℎ 𝑦

ℎ 𝑦+𝛿
≤ 𝑒

𝜖⋅
𝛿

𝐺𝑆𝑓



When is Laplace Mechanism Useful?

• Laplace mechanism is always private.

• When is it accurate?

Example: 𝑥1, … , 𝑥𝑛 ∈ 0,1 , ave 𝑥 =
𝑥1+⋯+𝑥𝑛

𝑛

• 𝐺𝑆ave = 1/𝑛 Noise= Lap
1

𝜖𝑛

Accurate when GS is low 

(and 𝑛, the size of the database, is sufficiently large)



Can Global Sensitivity Be Too High?

Example: 𝑥1, … , 𝑥𝑛 ∈ 0,1 , 𝑚𝑒𝑑𝑖𝑎𝑛 𝑥 is median of 𝑥1, … , 𝑥𝑛.

• 𝐺𝑆median = ?

• Noise: Lap
1

𝜖

• But for most neighboring datasets 𝑥 and 𝑥′,

𝑚𝑒𝑑𝑖𝑎𝑛 𝑥 −𝑚𝑒𝑑𝑖𝑎𝑛 𝑥′ is small

• Can we add less noise on ``good’’ datasets?

ቊ
𝑥 = 0…0 0 1…1

𝑛 − 1

2

ቊ

𝑛 − 1

2

𝑥′ = 0…0 1 1…1
𝑛 − 1

2

ቊ

𝑛 − 1

2

ቊ

𝑚𝑒𝑑𝑖𝑎𝑛 𝑥 = 0 𝑚𝑒𝑑𝑖𝑎𝑛 𝑥′ = 1

𝑇𝑜𝑜 𝑚𝑢𝑐ℎ 𝑛𝑜𝑖𝑠𝑒!
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Smooth Sensitivity Framework

[Nissim Raskhodnikova Smith]



Local Sensitivity

Local sensitivity of a function 𝑓at point 𝑥 is

Relationship to GS:   𝐺𝑆𝑓 = max
𝐝𝐚𝐭𝐚𝐬𝐞𝐭𝐬 𝑥

𝐿𝑆𝑓 𝑥

Example: 𝑚𝑒𝑑𝑖𝑎𝑛 𝑜𝑓 0 ≤ 𝑥1 ≤ ⋯ ≤ 𝑥𝑛 ≤ 1 for odd 𝑛.

• L𝑆median (𝑥)= ?
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𝑳𝑺𝒇(𝒙) = max
𝑥′: 𝐧𝐞𝐢𝐠𝐡𝐛𝐨𝐫 𝑜𝑓 𝑥

𝑓 𝑥 − 𝑓 𝑥′ .

0 1𝒙𝟏 𝒙𝒎−𝟏 𝒙𝒎 𝒙𝒎+𝟏 𝒙𝒏

median

… …

newmedian
when 𝑥1

′ = 1
newmedian
when 𝑥𝑛

′ = 0



Local Sensitivity

Local sensitivity of a function 𝑓at point 𝑥 is

Relationship to GS:   𝐺𝑆𝑓 = max
𝐝𝐚𝐭𝐚𝐬𝐞𝐭𝐬 𝑥

𝐿𝑆𝑓 𝑥

Example: 𝑚𝑒𝑑𝑖𝑎𝑛 𝑜𝑓 0 ≤ 𝑥1 ≤ ⋯ ≤ 𝑥𝑛 ≤ 1 for odd 𝑛.

• L𝑆median (𝑥)= max(𝑥𝑚+1 − 𝑥𝑚, 𝑥𝑚 − 𝑥𝑚−1)

Goal: Release 𝑓(𝑥) with less noise when 𝐿𝑆𝑓 𝑥 is lower. 

28

0 1𝒙𝟏 𝒙𝒎−𝟏 𝒙𝒎 𝒙𝒎+𝟏 𝒙𝒏

median newmedian
when 𝑥1

′ = 1
newmedian
when 𝑥𝑛

′ = 0

… …

𝑳𝑺𝒇(𝒙) = max
𝑥′: 𝐧𝐞𝐢𝐠𝐡𝐛𝐨𝐫 𝑜𝑓 𝑥

𝑓 𝑥 − 𝑓 𝑥′ .



First Attempt: Local Sensitivity

Noise with magnitude proportional to 𝐿𝑆𝑓(𝑥) instead of 𝐺𝑆𝑓?

Problem: noise magnitude might reveal information.

Example: median

• Idea: make noise magnitude an ``insensitive’’ function

29

ቊ

𝑥 = 0…0 000 1…1
𝑛 − 3

2

ቊ

𝑛 − 3

2

𝑥′ = 0…0 001 1…1
𝑛 − 3

2

ቊ

𝑛 − 3

2

ቊ

𝑚𝑒𝑑𝑖𝑎𝑛 𝑥 = 0 𝑚𝑒𝑑𝑖𝑎𝑛 𝑥′ = 0

𝐿𝑆𝑚𝑒𝑑𝑖𝑎𝑛 𝑥 = 0 𝐿𝑆𝑚𝑒𝑑𝑖𝑎𝑛 𝑥′ = 1

Pr 𝐴 𝑥 = 0 = 1 Pr 𝐴 𝑥′ = 0 = 0

𝐴 is not differentially private



Smooth Bounds on Local Sensitivity

Design sensitivity function 𝑆 𝑥

• 𝑆(𝑥) is an 𝜖-smooth upper bound on 𝐿𝑆𝑓(𝑥) if

– for all 𝑥: 𝑆 𝑥 ≥ 𝐿𝑆𝑓(𝑥)
– for all neighbors 𝑥, 𝑥′: 𝑆 𝑥 ≤ 𝑒𝜖 𝑆(𝑥′)

Example: 𝐺𝑆𝑓 is a smooth bound on 𝐿𝑆𝑓 𝑥 .
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Theorem

If 𝐴 𝑥 = 𝑓 𝑥 + 𝑛𝑜𝑖𝑠𝑒
𝑆(𝑥)

𝜖
then 𝐴 is (𝜖′, 𝛿)-diff. private.

𝑆(𝑥)



Smooth Sensitivity

• For two datasets 𝑥 and 𝑦, let 𝑑𝑖𝑠𝑡(𝑥, 𝑦)= 𝑖: 𝑥𝑖 ≠ 𝑦𝑖

• Smooth sensitivity 𝑆𝑓
∗ 𝑥 = max

𝐝𝐚𝐭𝐚𝐬𝐞𝐭𝐬 𝒚
𝐿𝑆𝑓 𝑦 ⋅ 𝑒−𝜖⋅𝑑𝑖𝑠𝑡(𝑥,𝑦).

• Intuition: 𝑆𝑓
∗ 𝑥 is low when 𝑥 is far from sensitive datasets
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Lemma

1. Smooth sensitivity is an 𝜖-smooth upper bound on 𝐿𝑆𝑓.

2. For every 𝜖-smooth upper bound 𝑆 on 𝐿𝑆𝑓:

𝑆𝑓
∗ 𝑥 ≤ 𝑆(𝑥) for all 𝑥.



Computing Smooth Sensitivity

Recall: Smooth sensitivity 𝑆𝑓
∗ 𝑥 = max

𝒚
𝐿𝑆𝑓 𝑦 ⋅ 𝑒−𝜖⋅𝑑𝑖𝑠𝑡(𝑥,𝑦).

Example: median

𝐿𝑆median
𝑘 𝑥 = max

𝒕=𝟎,𝟏,…,𝒌+𝟏
(𝑥𝑚+𝑡+𝑘+1−𝑥𝑚+𝑡)

This gives 𝑂(𝑛2) time algorithm for computing  𝑆median
∗ 𝑥 . 

(It can be computed in time 𝑂(𝑛 log 𝑛).)
33

Observation

𝑆𝑓
∗ 𝑥 = max

𝒌=𝟎,𝟏,…,𝒏
𝐿𝑆𝑓

𝑘 𝑥 ⋅ 𝑒−𝜖⋅𝑘 ,

where 𝐿𝑆𝑓
𝑘 𝑥 = max

𝒚:𝒅𝒊𝒔𝒕 𝒙,𝒚 ≤𝒌
𝐿𝑆𝑓 𝑦 .

0 1𝒙𝟏 𝒙𝒎−𝒌−𝟏 𝒙𝒎 𝒙𝒎+𝟏 𝒙𝒏… …… 𝒙𝒎+𝒌+𝟏 …

…



Conclusion: Calibrating Noise 

• Adding noise proportional to local sensitivity is not safe. 

• Smooth sensitivity framework allows one to calibrate noise to 
the input dataset.

– Requires understanding combinatorial structure of the problem.

• There are other frameworks based on local sensitivity:
– Propose-Test-Release [Dwork Lei, Karwa R Smith Yaroslavtsev]

– Sample-and-Aggregate [Nissim R Smith]
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Conclusion: Differential Privacy

• a  rigorous and widely applicable notion of privacy

• is defined in terms of algorithm

• requires the algorithm to be randomized

• puts a restriction on the algorithm, requiring that output 
distributions on neighboring datasets be close

• is used in 2020 Census, by Apple and Google
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