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Last time

e Stationary distributions

» Random walks on graphs
* Algorithm for s-t-PATH

Today
» Sublinear algorithms
» Differential privacy
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Goal: Fundamental Understanding
of Sublinear Computation

e What computational tasks?
e How to measure quality of approximation?
e What type of access to the input?

e Can we make our computations robust
(e.g., to noise or erased data)?



,-;’?; Fundamental Computational Tasks
 Property testing
* need to answer YES or NO

» intuition: only require correct answers on two sets of
Instances that are very different from each other

 Learning
* need an approximate representation of an object
» Input is from a given class (or iIs close to it)

 Classical approximation
 need to compute a value
» output should be close to the desired value



537 Property Testing: Definition

[Rubinfeld Sudan, Goldreich Goldwasser Ron]

P~

YES

NO

=)

Randomized Algorithm

Accept with
probability > 2/3

Reject with
probability >2/3

Property Tester

=

YES

Far from

YES

—
=)

Accept with
probability > 2/3

Don’t care

Reject with
probability > 2/3

e-far = differs in many places (= ¢ fraction of places)




s37IExample: Lipschitz Testing [Jhar

Input: a list of n numbers x,,x,, ..., x,
e Alist of numbers is Lipschitz if |x;4.1 — x;| < 1 for all i.
e (Question: Is the list Lipschitz?
Requires reading entire list: Q2(n) time
e Approximate version: Is the list Lipschitz or e-far from Lipschitz?
(An ¢ fraction of x; ’s have to be changed to make it Lipschitz.)

Our result: O((logn)/¢) time
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1. Test: Pick arandom i and reject if |x;,; —x;| > 1
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1 2 3

Construct a graph (2-spanner)
[Bhattacharyya Grigorescu Jung R Woodruff]

e by adding a few “shortcut” edges (i,j) fori <j

< nlogn edges

e where each pair of vertices is connected by a path of length at most 2




(Test

— |

LPick a random edge (i, j) from the 2-spanner and reject if |xj B xi| >j— 1.

Analysis:
e Callapair (i,)) violated if |xj — xl-| > j — [, and satisfied otherwise.

e |fi isan endpoint of a violated edge, call x; bad. Otherwise, call it good.

[ Claim 1. All pairs of good numbers are satisfied. ]

Proof: Consider any two good numbers, x; and x..
They are connected by a path of (at most) two satisfied edges (i, k), (k, j)

:>|xk—inSk—iand|xj—xk|Sj—k

Sl — x| < | — x| F e —xl S G-k +(k—i) =j—i



(Test

— |

LPick a random edge (i, j) from the 2-spanner and reject if |xj B xi| >j— 1.

Analysis:
e Callapair (i,)) violated if |xj — xl-| > j — [, and satisfied otherwise.

e |fi isan endpoint of a violated edge, call x; bad. Otherwise, call it good.

[ Claim 1. All pairs of good numbers are satisfied. ]

[ Claim 2. An e-far list violates > ¢/(2 logn) fraction of edges in 2-spanner. ]

Proof: If a list is e-far from Lipschitz, it has = en bad numbers. (Claim 1)
e Each violated edge contributes 2 bad numbers.

e 2-spanner has = % violated edges out of n logn.



(Test

— |

LPick a random edge (i, j) from the 2-spanner and reject if |xj B xi| >j— 1.

Analysis:

e Callapair (i,)) violated if |xj — xl-| > j — [, and satisfied otherwise.

[ Claim 2. An e-far list violates > ¢/(2 logn) fraction of edges in 2-spanner. ]

Algorithm w
Sample 41?“ edges (x;,x;) from the 2-spanne‘r and reject if |xj — xl-| ol =k J
Guarantee: All Lipschitz lists are accepted. ~/

All lists that are e-far from Lipschitz are rejected with probability > 2/3. /

Time: O((log n)/?)
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%%S; Testing if a List Is Lipschitz: Summary

e [Jha R]:
We can determine if a list of n numbers is
Lipschitz or e-far from Lipschitz

: | :
IN O( Og n) time.

e [Jha R, Blais R Yaroslavtsev, Chakrabarty Dixit Jha Seshadhri]:
This cannot be improved.



GCS
2% | Testing Properties of High-Dimensional Functions

K"

In polylogarithmic time, we can test a large class of
properties of functions f: {1, ...,n}¢ - R, including:

L L L
e Lipschitz property [JhaR] y )
* Monotonicity [Goldreich Goldwasser Lehman Ron, //
Dodis Goldreich Lehman R Ron Samorodnitsky] //'
e Bounded-derivative properties ///

[Chakrabarty Dixit Jha Seshadhri]

e Unateness
[Baleshzar Chakrabarty Pallavoor R Seshadhri]




%Sf; Sublinear Algorithms: Summary

« Many problems admit sublinear-time algorithms
Algorithms are often simple

Analysis requires creation of interesting combinatorial,
geometric and algebraic tools

» Unexpected connections to other areas
« Many open guestions



5%5; Private Data Analysis

Individuals Curator Data Analysts

(Queries)
Answers
>

>o >

Typical examples: census, medical studies, what big
companies want to publish about our data...

Two conflicting goals
» Protect privacy of individuals
 Differential privacy [Dwork McSherry Nissim Smith 06]
» Give accurate answers



&S . .
sa7| Neighboring Datasets

[TWO datasets x, x" are neighbors if they differ in one person’s data. ]




537 Differential Privac [Dwork McSherry Nissim Smith]

/Privacy Definition A
An algorithm A is e-differentially private if
for all pairs of neighbors x, x' and all sets of answers S:
\ Pr([A(x) € S| < e¢Pr|A(x') € S| Y,




37| Properties of Differential Privacy

« Composition:
If algorithms A1 and A: are e-differentially private then
algorithm that outputs (4100, A2(x)) Is 2e-differentially private

« Meaningful in the presence of arbitrary external information

18



Output Perturbation

Frameworks for designing
differentially private algorithms

19



g-;’%s;l Output Perturbation

Individuals Curator Data Analysts

Evaluate f(x)

>o o

Alx) = f(x) +

noise




g-;?f, Global Sensitivity Framework

Global sensitivity of a function f Is
GSp= max |f(x)— f(x)I.

neighbors x,x

X1+ +Xp

Example: x4, ..., x, € [0,1], ave(x) =
* (S, ye =7

n



%5?, Global Sensitivity Framework

Global sensitivity of a function £ Is
GSp= max |f(x)— f(x)I.

neighbors x,x

X1+ t+Xp

Example: x4, ..., x, € [0,1], ave(x) =
* GS,e=1/n

n

/Theorem [Dwork McSherry Nissim Smith] 3

If A(x) = f(x) + Lap (%) then A is e-differentially private.
N Y




<a| Global Sensitivity: Noise Distribution

s : N
Laplace Mechanism Theorem [Dwork McSherry Nissim Smith]

IfA(x) = f(x) + Lap (Gsf) then A is e-differentially private.
Y

|yl
Laplace distribution Lap(A) has density h(y) = % e 1

(mean 0, standard deviation V2 - 1)

Sliding Property of Lap (Gsf)

|5
h(y) < Ech
h(y+6) —

h(y+0)

forall y, o:




%35, When iIs Laplace Mechanism Useful?

e Laplace mechanism is always private.
e When is it accurate?

X1+ +xp

Example: X1, ey X € [0'1]' aVG(X) = n

e (S,ye=1/n  Noise= Lap( - )

en

Accurate when GS is low
(and n, the size of the database, is sufficiently large)



%Sf; Can Global Sensitivity Be Too High?

Example: x4, ..., x, € [0,1], median(x) is median of x4, ..., X,,.

* GSmedian = ?
x=0..001..1 x=0..011..1
n—1 n—1 n—1 n—1
2 2 2 2
median(x) =0 median(x’) = 1
. 1
* Noise: Lap(;) Too much noise!

e But for most neighboring datasets x and x’,
median(x) — median(x") is small
e Can we add less noise on 'good” datasets?



Smooth Sensitivity Framework

[Nissim Raskhodnikova Smith]



Local Sensitivity

Local sensitivity of a function fat point x is
LS;(0) = max |f(x) = Q).

x": neighbor of x

Relationship to GS: GSf = max LSg(x)

datasets x

Example: medianof 0 < x; < -+ < x, < 1 foroddn.

0 X1 Xm—-1 Xm Xm4+1 - Xn 1
| ® ® - - - } >
median

* LSmedian (x)z ?

27



Local Sensitivity

Local sensitivity of a function fat point x is
LS;(0) = max |f(x) = Q).

x": neighbor of x

Relationship to GS: GSf = max LSg(x)

datasets x

Example: medianof 0 < x; < -+ < x, < 1 foroddn.

O xl [N ] xm_l Xm xm+1 aEm xn 1
| ® ® - - - } >
median

* LShedian (x)z max(xm+1 — Xm» Xm — xm—l)

Goal: Release f(x) with less noise when LS¢(x) is lower.

28



First Attempt: Local Sensitivity

Noise with magnitude proportional to LSy (x) instead of GS¢?

Problem: noise magnitude might reveal information.

Example: median

x=0..00001..1 x'=0..00011..1
———

n—3 n—3 n—23 n—3
2 2 2 2
median(x) = 0 median(x') =0
LSmedian(x) =0 LSmedian(x) =1
Pr[A(x) =0] =1 Pr[A(x')=0]=0

A is not differentially private

e |dea: make noise magnitude an insensitive’” function

29



Smooth Bounds on Local Sensitivity

Design sensitivity function S(x)

e S(x)isan e-smooth upper bound on LS¢(x) if

— forall x: 5(x) = LS¢(x)
— for all neighbors x,x":  S(x) <e€ S(x")
A
5(x)
LS (2) -
[ Theorem )

5G)
€

If A(x) = f(x) + noise(
N

Example: GS¢ is a smooth bound on LS¢(x).

) then A is (¢’, §)-diff. private.
J

30



Smooth Sensitivity

e Fortwo datasets x and vy, let dist(x, y)= |{i: x; # y;}|

* Smooth sensitivity S¢(x) =  max LS¢(y) - g ~€-dist(x.y),
datasets y

* Intuition: S¢(x) is low when x is far from sensitive datasets

/Lemma A

1. Smooth sensitivity is an e-smooth upper bound on LS.
2. For every e-smooth upper bound § on LS¢:
N Sr(x) < S(x) for all x. Y

31



Computing Smooth Sensitivity

Recall: Smooth sensitivity S7 (x) = max LS (y) - e~ €' 4stt6y),
y

¢ Observation N
S*(x) = max LSf(x)-e €k,
7 (x) pJpax () -

where LSf(x) = max LS

\_ f( ) y:dist(x,y)<k f(y)

Example: median

medlan(x) = - O%?§+1(xm+t+k+1_xm+t)
0 X1 - Xm-k-1 Xm  Xm+1 - Xm+k+1 =+ Xn 1
} - - - - - - - - *—>

This gives 0(n?) time algorithm for computing S o412 (X).

(It can be computed in time O(nlogn).) .



Conclusion: Calibrating Noise

e Adding noise proportional to local sensitivity is not safe.
e Smooth sensitivity framework allows one to calibrate noise to
the input dataset.
— Requires understanding combinatorial structure of the problem.
e There are other frameworks based on local sensitivity:

— Propose-Test-Release [Dwork Lei, Karwa R Smith Yaroslavtsev]
— Sample-and-Aggregate [Nissim R Smith]

34



Conclusion: Differential Privacy

a rigorous and widely applicable notion of privacy
is defined in terms of algorithm
requires the algorithm to be randomized

puts a restriction on the algorithm, requiring that output
distributions on neighboring datasets be close

is used in 2020 Census, by Apple and Google

35



