

Randomness in Computing

LECTURE 27 Last time

- Stationary distributions
- Random walks on graphs
- Algorithm for *s*-*t*-PATH

Today

- Sublinear algorithms
- Differential privacy

Goal: Fundamental Understanding of Sublinear Computation

- What computational tasks?
- How to measure quality of approximation?
- What type of access to the input?
- Can we make our computations robust (e.g., to noise or erased data)?

- Property testing
 - need to answer YES or NO
 - intuition: only require correct answers on two sets of instances that are very different from each other
- Learning
 - need an approximate representation of an object
 input is from a given class (or is close to it)
- Classical approximation
 - need to compute a value

> output should be close to the desired value

CS 537 Property Testing: Definition

[Rubinfeld Sudan, Goldreich Goldwasser Ron]

 ε -far = differs in many places ($\geq \varepsilon$ fraction of places)

CS 537 Example: Lipschitz Testing [Jha R]

Input: a list of *n* numbers $x_1, x_2, ..., x_n$

- A list of numbers is Lipschitz if $|x_{i+1} x_i| \le 1$ for all *i*.
- Question: Is the list Lipschitz?

Requires reading entire list: $\Omega(n)$ time

 Approximate version: Is the list Lipschitz or ε-far from Lipschitz? (An ε fraction of x_i's have to be changed to make it Lipschitz.)
 Our result: O((log n)/ε) time

CS 537 Lipschitz Testing: Attempts

1. **Test**: Pick a random *i* and reject if $|x_{i+1} - x_i| > 1$

CS Is a list Lipschitz or \varepsilon-far from Lipschitz?

Idea: Associate positions in the list with vertices of the directed line.

Construct a graph (2-spanner) $\leq n \log n$ edges[Bhattacharyya Grigorescu Jung R Woodruff]

- by adding a few "shortcut" edges (i, j) for i < j
- where each pair of vertices is connected by a path of length at most 2

Is a list Lipschitz or ε -far from Lipschitz?

Test

Pick a random edge (i, j) from the 2-spanner and **reject** if $|x_j - x_i| > j - i$.

Analysis:

- Call a pair (i, j) violated if $|x_j x_i| > j i$, and satisfied otherwise.
- If *i* is an endpoint of a violated edge, call x_i bad. Otherwise, call it good.

Claim 1. All pairs of good numbers are satisfied.

Proof: Consider any two good numbers, x_i and x_j .

They are connected by a path of (at most) two satisfied edges (i, k), (k, j)

$$\Rightarrow |x_k - x_i| \le k - i \text{ and } |x_j - x_k| \le j - k$$

 $\Rightarrow |x_j - x_i| \le |x_j - x_k| + |x_k - x_i| \le (j - k) + (k - i) = j - i$

Is a list Lipschitz or ε-far from Lipschitz?

Test

Pick a random edge (i, j) from the 2-spanner and **reject** if $|x_j - x_i| > j - i$.

Analysis:

- Call a pair (i, j) violated if $|x_j x_i| > j i$, and satisfied otherwise.
- If i is an endpoint of a violated edge, call x_i bad. Otherwise, call it good. Claim 1. All pairs of good numbers are satisfied.

Claim 2. An ε -far list violates $\geq \varepsilon/(2 \log n)$ fraction of edges in 2-spanner.

Proof: If a list is ε -far from Lipschitz, it has $\geq \varepsilon n$ bad numbers. (Claim 1)

- Each violated edge contributes 2 bad numbers.
- 2-spanner has $\geq \frac{\varepsilon n}{2}$ violated edges out of $n \log n$.

Is a list Lipschitz or ε -far from Lipschitz?

Test

Analysis:

• Call a pair (i, j) violated if $|x_j - x_i| > j - i$, and satisfied otherwise.

Claim 2. An ε -far list violates $\geq \varepsilon/(2 \log n)$ fraction of edges in 2-spanner.

Algorithm

Sample $\frac{4 \log n}{\mathcal{E}}$ edges (x_i, x_j) from the 2-spanner and **reject** if $|x_j - x_i| > j - i$. *Guarantee:* All Lipschitz lists are accepted.

All lists that are ε -far from Lipschitz are rejected with probability $\ge 2/3$. Time: O((log n)/²)

• [Jha R]:

We can determine if a list of *n* numbers is Lipschitz or ε -far from Lipschitz in $O\left(\frac{\log n}{\varepsilon}\right)$ time.

 [Jha R, Blais R Yaroslavtsev, Chakrabarty Dixit Jha Seshadhri]: This cannot be improved.

Testing Properties of High-Dimensional Functions

In polylogarithmic time, we can test a large class of properties of functions $f: \{1, ..., n\}^d \to \mathbb{R}$, including:

- Lipschitz property [Jha R]
- Monotonicity [Goldreich Goldwasser Lehman Ron, Dodis Goldreich Lehman **R** Ron Samorodnitsky]
- Bounded-derivative properties [Chakrabarty Dixit Jha Seshadhri]
- Unateness

[Baleshzar Chakrabarty Pallavoor R Seshadhri]

CS Sublinear Algorithms: Summary

- Many problems admit sublinear-time algorithms
- Algorithms are often simple
- Analysis requires creation of interesting combinatorial, geometric and algebraic tools
- Unexpected connections to other areas
- Many open questions

Typical examples: census, medical studies, what big companies want to publish about our data...

Two conflicting goals

- Protect privacy of individuals
 - **Differential privacy** [Dwork McSherry Nissim Smith 06]
- ➤ Give accurate answers

Two datasets x, x' are **neighbors** if they differ in one person's data.

CS 537 Differential Privacy [Dwork McSherry Nissim Smith]

Privacy Definition

An algorithm A is ϵ -differentially private if for all pairs of neighbors x, x' and all sets of answers S: $\Pr[A(x) \in S] \leq e^{\epsilon} \Pr[A(x') \in S]$

CS Properties of Differential Privacy

• Composition:

If algorithms A_1 and A_2 are ϵ -differentially private then algorithm that outputs $(A_1(x), A_2(x))$ is 2ϵ -differentially private

• Meaningful in the presence of arbitrary external information

Output Perturbation

Frameworks for designing differentially private algorithms

Global sensitivity of a function *f* is

$$GS_f = \max_{\text{neighbors } x, x'} |f(x) - f(x')|.$$

Example:
$$x_1, ..., x_n \in [0,1]$$
, $ave(x) = \frac{x_1 + \dots + x_n}{n}$

• $GS_{ave} = ?$

Global sensitivity of a function
$$f$$
 is

$$GS_{f} = \max_{\substack{\text{neighbors } x, x'}} |f(x) - f(x')|.$$

Example:
$$x_1, ..., x_n \in [0,1]$$
, $ave(x) = \frac{x_1 + \dots + x_n}{n}$

•
$$GS_{\text{ave}} = 1/n$$

Theorem [Dwork McSherry Nissim Smith]

If $A(x) = f(x) + Lap\left(\frac{GS_f}{\epsilon}\right)$ then A is ϵ -differentially private.

Global Sensitivity: Noise Distribution

Laplace Mechanism Theorem [Dwork McSherry Nissim Smith]

If $A(x) = f(x) + Lap\left(\frac{GS_f}{\epsilon}\right)$ then A is ϵ -differentially private.

Laplace distribution Lap(λ) has density $h(y) = \frac{1}{2\lambda} \cdot e^{-\frac{|y|}{\lambda}}$ (mean 0, standard deviation $\sqrt{2} \cdot \lambda$)

Sliding Property of
$$Lap\left(\frac{GS_f}{\epsilon}\right)$$

for all $y, \delta: \frac{h(y)}{h(y+\delta)} \le e^{\epsilon \cdot \frac{|\delta|}{GS_f}}$

- Laplace mechanism is always private.
- When is it accurate?

Example:
$$x_1, \dots, x_n \in [0,1]$$
, $\operatorname{ave}(x) = \frac{x_1 + \dots + x_n}{n}$
• $GS_{\operatorname{ave}} = 1/n$ Noise= $\operatorname{Lap}\left(\frac{1}{\epsilon n}\right)$

Accurate when GS is low (and n, the size of the database, is sufficiently large)

CS 537 Can Global Sensitivity Be Too High?

Example: $x_1, \dots, x_n \in [0,1]$, median(x) is median of x_1, \dots, x_n . • $GS_{median} = ?$

$x = 0 \dots 0 \ 0 \ 1 \dots 1$		$x' = 0 \dots 0 \ 1 \ 1 \dots 1$	
$_{n-1}$	$_{n-1}$	$_{n-1}$	$_{n-1}$
2	2	2	2

median(x) = 0 median(x') = 1

- Noise: Lap $\left(\frac{1}{\epsilon}\right)$ Too much noise!
- But for most neighboring datasets x and x', median(x) - median(x') is small
- Can we add less noise on ``good'' datasets?

Smooth Sensitivity Framework

[Nissim Raskhodnikova Smith]

Local sensitivity of a function f at point x is $LS_f(x) = \max_{x': \text{ neighbor } of x} |f(x) - f(x')|.$

Relationship to GS: $GS_f = \max_{\text{datasets } x} LS_f(x)$

Example: median of $0 \le x_1 \le \dots \le x_n \le 1$ for odd n. $0 x_1 \dots x_{m-1} x_m x_{m+1} \dots x_n 1$ new median median new median when $x'_n = 0$ when $x'_1 = 1$ • $LS_{median} (x) = ?$ **Local sensitivity** of a function f at point x is $LS_f(x) = \max_{x': \text{ neighbor } of x} |f(x) - f(x')|.$

Relationship to GS: $GS_f = \max_{\text{datasets } x} LS_f(x)$

Example: median of $0 \le x_1 \le \dots \le x_n \le 1$ for odd n. $0 x_1 \dots x_{m-1} x_m x_{m+1} \dots x_n 1$ new median median new median when $x'_n = 0$ new median when $x'_1 = 1$ • $LS_{median} (x) = \max(x_{m+1} - x_m, x_m - x_{m-1})$

Goal: Release f(x) with less noise when $LS_f(x)$ is lower.

First Attempt: Local Sensitivity

Noise with magnitude proportional to $LS_f(x)$ instead of GS_f ? Problem: noise magnitude might reveal information. Example: median

$x = \underbrace{0 \dots 0}{000} \underbrace{1 \dots 1}{}$	$x' = \underbrace{0 \dots 0}_{001} \underbrace{1 \dots 1}_{001}$	
n-3 $n-3$	n-3 $n-3$	
2 2	2 2	
median(x) = 0	median(x') = 0	
$LS_{median}(x) = 0$	$LS_{median}(x') = 1$	
$\Pr[A(x) = 0] = 1$	$\Pr[A(x')=0]=0$	

A is not differentially private

• Idea: make noise magnitude an ``insensitive'' function

Smooth Bounds on Local Sensitivity

Design sensitivity function S(x)

- S(x) is an ϵ -smooth upper bound on $LS_f(x)$ if
 - for all x: S(x) ≥ LS_f(x)
 for all neighbors x, x': S(x) ≤ e^ε S(x')

If
$$A(x) = f(x) + noise\left(\frac{S(x)}{\epsilon}\right)$$
 then A is (ϵ', δ) -diff. private.

Example: GS_f is a smooth bound on $LS_f(x)$.

Smooth Sensitivity

- For two datasets x and y, let $dist(x, y) = |\{i: x_i \neq y_i\}|$
- Smooth sensitivity $S_f^*(x) = \max_{\text{datasets } y} LS_f(y) \cdot e^{-\epsilon \cdot dist(x,y)}$.
- Intuition: $S_f^*(x)$ is low when x is far from sensitive datasets

Lemma

- 1. Smooth sensitivity is an ϵ -smooth upper bound on LS_f .
- 2. For every ϵ -smooth upper bound S on LS_f :

 $S_f^*(x) \leq S(x)$ for all x.

Computing Smooth Sensitivity

Recall: Smooth sensitivity $S_f^*(x) = \max_{y} LS_f(y) \cdot e^{-\epsilon \cdot dist(x,y)}$.

Observation

$$S_{f}^{*}(x) = \max_{k=0,1,\dots,n} LS_{f}^{k}(x) \cdot e^{-\epsilon \cdot k},$$

where $LS_{f}^{k}(x) = \max_{\substack{y:dist(x,y) \le k}} LS_{f}(y)$

This gives $O(n^2)$ time algorithm for computing $S^*_{\text{median}}(x)$. (It can be computed in time $O(n \log n)$.)

Conclusion: Calibrating Noise

- Adding noise proportional to local sensitivity is not safe.
- Smooth sensitivity framework allows one to calibrate noise to the input dataset.
 - Requires understanding combinatorial structure of the problem.
- There are other frameworks based on local sensitivity:
 - Propose-Test-Release [Dwork Lei, Karwa R Smith Yaroslavtsev]
 - Sample-and-Aggregate [Nissim R Smith]

Conclusion: Differential Privacy

- a rigorous and widely applicable notion of privacy
- is defined in terms of algorithm
- requires the algorithm to be randomized
- puts a restriction on the algorithm, requiring that output distributions on neighboring datasets be close
- is used in 2020 Census, by Apple and Google