
CS 537: Randomness in Computing Prof. Sofya Raskhodnikova
Boston University December 5, 2024

Homework 12 – Due Thursday, December 5, 2024.

Page limit You can submit at most 2 pages per problem, even if the problem has multiple parts.
If you submit a longer solution for some problem, only the first sheet of paper will be graded.

Reminder Collaboration is permitted, but you must write the solutions by yourself without assis-
tance, and be ready to explain them orally to the instructor if asked. You must also identify your
collaborators and whether you gave help, received help, or worked something out together. Getting
solutions from outside sources such as the Web or students not enrolled in the class is strictly forbidden.

Exercises Please practice on exercises in Chapter 7 of Mitzenmacher-Upfal.

Problems

1. (Algorithmic LLL) Show how, given integers k and n, to find, in time nO(k) and with high
probability, a coloring of the edges of the complete graph Kn with 3 colors such that no k-clique is

monochromatic (that is, has all its edges colored the same way) as long as 8
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Hint: Use (with some modifications) the algorithmic version of the Lovasz Local Lemma.

2. (Building on the 2-SAT algorithm) A coloring of a graph G is an assignment of a color to each
of its vertices. If k ≥ 2 is an integer, then k-coloring of G is a coloring of G with k colors such that
no two adjacent vertices have the same color. A graph G is k-colorable if there exists a k-coloring
of G. (For example, 2-colorable is the same as bipartite.)

Let G be a 3-colorable graph. Consider the following algorithm for coloring the vertices of G with
2 colors so that no triangle is monochromatic. Start with an arbitrary coloring of vertices in G with
2 colors. While there exists a monochromatic triangle in G, pick any such triangle T and change
the color of uniformly random vertex of T .

(a) Derive an upper bound on the expected number of such recoloring steps needed for the algo-
rithm to find a coloring with 2 colors with no monochromatic triangles. Your upper bound
should be polynomial in the number of vertices in G.

Hint: Let C be a 3-coloring of G with “colors” in {0, 1, 2}. Let U be the set of vertices in G
assigned colors 0 or 1 by C. Keep track of the number of vertices in U whose colors are the
same as those assigned by C.

(b) If you only used the fact that |U | ≤ n in the previous part, notice that we can permute the
names of the colors in the 3-coloring C. Use this to slightly improve your bound in (b).

(c) Now we change the algorithm to start with a uniformly random assignment of two colors to
vertices (instead of an arbitrary one). How does it affect the expected number of recoloring
steps?

3. (Markov Chains)

(a) Exercise 7.1 (a,b,c).

(b) Exercise 7.7.
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4. (Lopsided Tipsy) In class, we studied the Drunkard’s problem, where Tipsy was equally likely to
go left or right at each time step. Consider the case when his walk is lopsided: he is more likely
to go left than right. Suppose that Tipsy starts at position i, his home is at position n, and the
river is at position 0. At each time step, Tipsy’s position decreases by 1 with probability 3/4 and
increases by 1 with probability 1/4. Directions taken at different steps are mutually independent.
Tipsy’s walk finishes when he reaches his house or the river.

(a) Let Dt be the net distance towards home Tipsy has traveled after taking t steps. (If he moved
to the left on the first step, D1 is negative.) Prove that E[3Dt+1 ] = E[3Dt ].

(Hint: Use the Law of Total Expectation.)

(b) Determine the probability that Tipsy eventually ends up in the river and the probability that
he ends up home. (Hint: Consider limt→∞ E[3Dt ] and use the definition of expectation. Note
that as t → ∞, Tipsy will end up either home or in the river.)

(c) Generalize the argument in previous parts to the case where Tipsy goes left with probability
p > 1

2 .

(Hint: Consider E[cDt ] for some c that depends on p.)

5∗. (Optional, no collaboration) Design a problem you would put on the final for CS 537 if you
were teaching the course. Preferably the problem should be on one of the algorithms we covered in
the course, not just on probability.

Hint: If your problem is so good that it gets selected for the final exam, you will know how to solve
one problem on the final in advance.
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