Homework 3 – Due Thursday, September 23, 2021

Page limit You can submit at most 2 pages per problem, even if the problem has multiple parts. If you submit a longer solution for some problem, only the first sheet of paper will be graded.

Reminder Collaboration is permitted, but you must write the solutions by yourself without assistance, and be ready to explain them orally to the instructor if asked. You must also identify your collaborators and whether you gave help, received help, or worked something out together. Getting solutions from outside sources such as the Web or students not enrolled in the class is strictly forbidden.

Exercises Please practice on exercises in Chapter 2 of Mitzenmacher-Upfal and the following exercise.

1. Let R_1 and R_2 be independent random variables and let f be a function from real numbers to an arbitrary range.

 (a) Prove that for every subset S of the range of f, the events $f(R_1) \in S$ and $f(R_2) \in S$ are independent.

 (b) Use part (a) to justify our analysis of amplification, where we repeat the same basic algorithm multiple times with independent random coins to decrease error probability.

Problems

1. (Detecting defects) You are in charge of inspecting cookies baked in your company. A worker is unreliable if the proportion of defective cookies he bakes is α or higher. (For example, if he bakes 1000 cookies in a day, α1000 of them will be defective.)

 (a) You would like to make sure that if a worker is unreliable, you will find at least one defective cookie with probability 99% and fire him. You do not have time to inspect every single cookie. Instead you decide to choose k cookies uniformly and independently at random. For simplicity, let’s say that you will choose cookies with replacement. That is, on each try, you find a defective cookie with probability p, where p is the proportion of defective cookies the worker baked. Prove that if

 $$k \geq \frac{\ln 100}{\alpha}$$

 and $p \geq \alpha$ then you will find at least one defective cookie with probability 99%.

 (b) You got a raise, and now you are inspecting cookies made by n workers. You would like to ensure that with probability at least 99%, all unreliable workers will be fired, that is, you will detect a defective cookie for every one of them. You use the same random strategy as in part (a) for each worker, but now you have to inspect more cookies per worker because you want to achieve overall success probability of 99%, not just per worker. What should you choose k to be as a function of α and n? Find the smallest k you can.

 Hint: Use the union bound.

2. (Jensen’s Inequality)
(a) Suppose f is concave. How does Jensen’s inequality change for this case? (Briefly justify.)

(b) The geometric mean of a collection of n positive real numbers is the nth root of the product of the numbers, and the arithmetic mean is just the average. Use part (a) to prove that, for any set of n numbers, the arithmetic mean is greater or equal to the geometric mean.

(c) Use part (a) to prove that for any $\triangle ABC$, we have $\sin A + \sin B + \sin C \leq \frac{3\sqrt{3}}{2}$.

3. (Random children) After getting married, Cinderella and Prince decide to have children. They want to have at least one daughter, so they keep having children until the first girl is born. (For all parts of the problem, assume there are no multiple births.)

(a) Assuming that each child is a boy or a girl independently with equal probability, what is the expected number of girls and the expected number of boys the couple will have?

(b) How does the answer change if the probability of having a girl is only 0.4 instead of 0.5?

After thinking about feeding an army of children, Cinderella and Prince decide to change the strategy. They want to have children until either they have their first girl or they have k children, where $k \geq 1$.

(c) The same question as in part (a).

(d) The same question as in part (b).

4. (Random counter) You want to create a counter that stores the number of times the door to your lab has been opened. Assume that the door will be opened at most m times. You initialize your counter to 0.

(a) (Warmup) Suppose you increment your counter by 1 deterministically: every time the door is opened. How many bits do you need to represent your counter?

Now you want to study a different (randomized) implementation of the counter.

(b) Let X be the current value of the counter. Suppose you increment it by 1 randomly: every time the door is opened, you do it with probability 2^{-X}. When you want an estimate of the number of times the door has been opened, you compute $2^X - 1$.

Let X_i be the value of your counter when the door has been opened i times. Use the compact form of the law of total expectation to compute the expectation of 2^{X_i}.

(c) How many bits do you need to represent your counter, assuming that 2^X never exceeds 10 times its expectation (for all steps in the process). Use asymptotic notation to express your answer.

(d) Compute the expectation of the square of 2^{X_i}.

(Think, but don’t hand in, about the variance of 2^{X_i}.)

5* (Optional, no collaboration) You flip a fair coin until you see a run of k heads followed by a tail, where k is any number that is not divisible by 3. What is the expected number of flips?