
CS 537: Randomness in Computing Prof. Sofya Raskhodnikova
Boston University October 1, 2024

Homework 5 – Due Thursday, October 3, 2024

Page limit You can submit at most 2 pages per problem, even if the problem has multiple parts.
If you submit a longer solution for some problem, only the first sheet of paper will be graded.

Reminder Collaboration is permitted, but you must write the solutions by yourself without assis-
tance, and be ready to explain them orally to the instructor if asked. You must also identify your
collaborators and whether you gave help, received help, or worked something out together. Getting
solutions from outside sources such as the Web or students not enrolled in the class is strictly forbidden.

Exercises Please practice on exercises in Chapter 3 of Mitzenmacher-Upfal.

Problems

1. (MaxCut) In the problem MaxCut, we are given an undirected graph G = (V,E) and asked to
find a cut of maximum size in G. (Recall that a cut in G is a partition of the vertex set V into two
parts; the size of the cut is the number of edges with one endpoint in each part of the partition.
Assume that G is simple, that is, it has no loops and no multiple edges.) In contrast to the seemingly
very similar problem MinCut discussed in class (recall Karger’s algorithm), MaxCut is a famous
NP-hard problem, so we do not expect to find an efficient algorithm that solves it exactly. Here is
a simple linear-time randomized algorithm that gives a pretty good approximation:

• Randomly and independently color each vertex v ∈ V red or blue with probability 1/2.

• Output the cut defined by the red/blue partition of the vertices.

(a) Let random variable X denote the size of the cut output by the algorithm. Compute E[X] as
a function of the number of edges in G, and deduce that E[X] ≥ OPT/2, where OPT is the
size of a maximum cut in G.

Hint: Write X as a sum of indicator random variables.

(b) Let p denote the probability that the cut output by the algorithm has size at least 0.49 OPT .
Show that p ≥ 1/51.

Hint: Applying Markov’s inequality to X will not work here. Try applying Markov’s inequality
to a different random variable.

(c) Now compute the variance Var[X].

Hint: Again write X as the sum of indicators, as in part (a).

(d) Let p be the probability defined in part (b). Use Chebyshev’s inequality together with part
(c) to show that p = 1−O(1/|E|).
(Note how Chebyshev’s inequality gives us a better bound here than Markov’s.)

2. (Random counter, 20 points, double the usual page limit) You want to create a counter
that stores the number of times the door to your lab has been opened. Assume that the door will
be opened at most m times. You initialize your counter to 0.
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(a) (Warmup) Suppose you increment your counter by 1 deterministically: every time the door
is opened. How many bits do you need to represent your counter?

Now you want to study a different (randomized) implementation of the counter.

(b) Let X be the current value of the counter. Suppose you increment it by 1 randomly: every
time the door is opened, you do it with probability 2−X . When you want an estimate of the
number of times the door has been opened, you compute 2X − 1.

Let Xi be the value of your counter when the door has been opened i times. Use the compact
form of the law of total expectation to compute the expectation of 2Xi .

(c) How many bits do you need to represent your counter, assuming that 2X never exceeds 10
times its expectation (for all steps in the process)? Use asymptotic notation to express your
answer.

(d) Compute the variance of 2Xi .

(e) Let m̃ be the value of 2X − 1 after the door has been opened m times. Fix a parameter ϵ > 0.
We say that m̃ is a (1± ϵ)-approximation of m if

(1− ϵ)m ≤ m̃ ≤ (1 + ϵ)m.

Use Chebyshev’s inequality to give an upper bound in terms of ϵ on the probability that m̃ is
NOT a (1± ϵ)-approximation of m.

(f) To decrease the error probability, you decide to keep t independent random counters. That
is, every time the door opens, each counter Xj for j ∈ [t] is incremented with probability
2−Xj , and the random coins used for different counters are mutually independent. Your new
estimate is the average of the estimates you get from the counters: m̃ = 1

t

∑
j∈[t](2

Xj − 1).
What is the expectation and variance of the new estimate?

(g) Redo part (e) for the new estimate to get a bound in terms of ϵ and t. What should t be set
to as a function of ϵ to ensure that m̃ is a (1± ϵ)-approximation of m with probability at least
99%?

3. (Generalization of Randomized Median Algorithm) In this problem, you are asked to gen-
eralize the randomized median-finding algorithm from class (see Lecture 8 and also Section 3.5 of
the MU book), so that it finds an element of rank k (that is, the kth smallest element) in an array
of n distinct elements, for any given k ∈ [4n3/4, n− 4n3/4]. You may ignore rounding issues in your
algorithm and analysis.

(a) Explain how to modify lines 3, 4, 6 and 8 of the algorithm on the slide 11 from Lecture 8.

(b) Analyze the running time of the modified algorithm.

(c) We will follow the same analysis outline as in class (and in the book). Change the definitions
of events E1, E2, E3,1 and E3,2, so that they apply for general k.

(d) Write Pr[E1] and Pr[E3,1] as probability expressions involving the tail of a suitable binomial
random variable.

Do not repeat the rest of the analysis (which is essentially the same as in the case of finding the
median).
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