
CS 537: Randomness in Computing Prof. Sofya Raskhodnikova
Boston University October 10, 2024

Homework 6 – Due Thursday, October 10, 2024

Page limit You can submit at most 2 pages per problem, even if the problem has multiple parts.
If you submit a longer solution for some problem, only the first 2 pages will be graded.

Reminder Collaboration is permitted, but you must write the solutions by yourself without assis-
tance, and be ready to explain them orally to the instructor if asked. You must also identify your
collaborators and whether you gave help, received help, or worked something out together. Getting
solutions from outside sources such as the Web or students not enrolled in the class is strictly forbidden.

Exercises Please practice on exercises in Chapter 4 of Mitzenmacher-Upfal.

Problems

1. (Improving guarantees of randomized algorithms)

(a) You have developed a randomized algorithm A that, on every input of length n, runs in time
O(n2) and outputs either a correct answer for the problem you are trying to solve or “fail”.
You proved that, on every input, it returns “fail” with probability at most 0.99. Show how to
modify algorithm A to get a new algorithm that always computes a correct answer and runs
in expected time O(n2).

(b) You have developed a randomized algorithm B that always solves your problem and, on every
input of length n, runs in expected time T (n). Show how to modify algorithm B to get a
new algorithm that solves your problem with probability at least 0.95 and always runs in time
a · T (n), for as small constant a as you can.

Your friend managed to prove that the variance of the running time of B on input of length n
is at most

√
n. How should you modify your solution above to obtain the best running time

while still solving the problem with probability at least 0.95? Clarification: You answer for
this question about modification does not need to be of the form aT (n), where a is a constant.
Also, if it is helpful, you may assume that T (n) ≥ n: this should allow you to get a clear
improvement in the running time when you use the bound on the variance.

(c) You have developed a randomized algorithm C for computing a function f that, on every input
x, returns the correct answer f(x) with probability at least 0.7 and an incorrect answer with
the remaining probability. To amplify the success probability, you do the following: you run
your algorithm k times and output the answer that appears most frequently in the k runs
(breaking ties arbitrarily). Let t > 0 be a parameter. Use a Chernoff-Hoeffding bound to find
a value of k that ensures that the new algorithm makes a mistake in computing f(x) with
probability at most 2−t.

2. (Chernoff Bound for a die) You have a fair 4-sided die with vertices marked with 0,1,2, and 3.
Let random variable X denote the sum of n independent rolls of the die.

(a) For all δ ∈ (0, 1), derive a Chernoff-type bound on Pr[X ≥ (1 + δ)E[X]] using the method
from Lecture 9 (i.e., applying Markov’s inequality to the random variable etX). Instead of
optimizing for the value of t, you may use t = ln(1 + δ).
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(b) Give an upper bound on Pr[X ≥ 2n] using Markov’s inequality, Chebyshev’s inequality, Ho-
effding bound (from Lecture 10), and your bound from part (a). Compare the four bounds
you obtained.

3. (Random vectors) Consider d-dimensional vectors, where d is a sufficiently large integer. Recall
that two vectors a and b are orthogonal if their dot product a · b =

∑
i∈[d] aibi is zero. For a real

number ϵ > 0, two vectors are ϵ-close to being orthogonal if their dot product is in the interval
[−ϵ, ϵ].

(a) You pick two d-dimensional unit vectors independently at random by setting each coordinate
uniformly and independently to 1/

√
d or −1/

√
d. Give the best upper bound you can on the

probability that the two vectors are not 1/10-close to orthogonal.

(b) In d dimensions, at most d vectors can be pairwise orthogonal. However, exponentially many
(in d) vectors can be close to pairwise orthogonal. Moreover, a random collection of exponen-
tially many vectors is likely to be close to pairwise orthogonal. Find as large k as you can
(as a function of d) such that k unit vectors chosen independently as specified in part (a) are
pairwise 1/10-close to being orthogonal with (at least) constant probability.

4∗. (Optional, no collaboration) In this problem, you will analyze an algorithm for estimating the
number of connected components in an undirected graph G = (V,E) on n nodes within ±ϵn, where
ϵ ∈ (0, 1) is a parameter.

(a) Let C be the number of connected components in G. For every node v, let nv denote the
number of nodes in the connected component of v. Prove that C =

∑
v∈V

1
nv
.

(b) For every node v, let n̂v = min(nv, 2/ϵ). Let Ĉ =
∑

v∈V
1
n̂v
. Can Ĉ be smaller than C? Larger

than C? By how much? (Give the best upper bound you can.)

(c) Let s be a parameter. Define C̃ to be an estimate obtained as follows: We sample s uniformly
random nodes from G independently with replacement. For each sampled node v, we compute
n̂v by doing a BFS from v until we visit at most 2/ϵ nodes. We compute the average of values
1
n̂v

over all sampled nodes and set C̃ to be n times the average.

Use a Chernoff-Hoeffding bound to find the (asymptotically) smallest value of s for which

Pr[|C̃ − Ĉ| ≥ ϵn/2] ≤ 1/3.

(d) Argue that, with probability at least 2/3, the estimate C̃ approximates the number of con-
nected components in G within ±ϵn.

(e) Suppose G has degree at most d. Assuming BFS takes constant time per node put in the BFS
queue, how long does the procedure above take (asymptotically), with the setting of s that
you found?
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