
CS 537: Randomness in Computing Prof. Sofya Raskhodnikova
Boston University October 11, 2024

Homework 7 – Due Thursday, October 17, 2024

Page limit You can submit at most 2 pages per problem, even if the problem has multiple parts.
If you submit a longer solution for some problem, only the first sheet of paper will be graded.

Reminder Collaboration is permitted, but you must write the solutions by yourself without assis-
tance, and be ready to explain them orally to the instructor if asked. You must also identify your
collaborators and whether you gave help, received help, or worked something out together. Getting
solutions from outside sources such as the Web or students not enrolled in the class is strictly forbidden.

Exercises Please practice on exercises in Chapter 4 of Mitzenmacher-Upfal.

Problems

1. (Randomized Rounding and Randomized Response)

(a) (Randomized Rounding) This problem is similar to the Set Balancing problem discussed
in class. We are given an n × n matrix A with entries in {0, 1} and a real-valued vector p
with n entries in [0, 1]. We would like to “round” the entries of p to obtain an n-bit vector
q such that Aq is close to Ap in every component. In other words, we would like to ensure
that ∥A(p− q)∥∞ is small.

To obtain q, we can use the following approach, called randomized rounding: Each entry qi of
q, for i ∈ [n], is (independently) set to 1 with probability pi and to 0 with probability 1− pi.

Derive a bound on ∥A(p− q)∥∞ that is exceeded with probability at most 2/n.

(b) (Randomized Response) You are collecting sensitive data from n people. Each person i
has a secret bit xi ∈ {0, 1}. For example, this bit might represent whether each person already
had COVID-19 or not. You would like to approximate the sum of the secret bits. (In our
example, it would represent the number of people who had COVID-19.) To protect privacy of
your respondents, you ask each of them to report Xi, which is set to xi with probability 1

2 + ϵ
and to 1− xi with probability 1

2 − ϵ, where ϵ ∈ (0, 12) is a privacy parameter.

You define new random variables Yi, where Yi is a function of Xi and ϵ, and return Y =∑
i∈[n] Yi as your estimate for

∑
i∈[n] xi.

Explain how to define Yi and derive upper bounds on the probability that the error of your
estimate exceeds δn using (i) Chebyshev’s inequality; (ii) Hoeffding bound.

(Compute, but do not submit: What would δ be as a function of ϵ and n if you wanted
constant probability of error (using asymptotic notation)? Is it different for the two bounds
you obtained? What changes if you increase δ by a factor of

√
lnn?)

(c) (Randomized Response on a Graph) Now you use the same strategy to extract informa-
tion about people’s relationships. The input to the problem is an n-node graph, where vertices
represent people, and an edge between two nodes represents that its endpoints engaged in some
sensitive transaction. For each pair of nodes e = {u, v}, there is a secret bit xe that indicates
whether the edge e is present in the graph. Your goal is to estimate the number of triangles
(i.e., 3-cycles) in the graph.
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As before, you ask the participants to report Xe that is set to xe with probability 1
2 + ϵ and

to 1 − xe with probability 1
2 − ϵ, where ϵ ∈ (0, 12) is a privacy parameter. You defined Ye

as in part (b). For each triple {u, v, w} of nodes in the graph, you define a random variable
Z{u,v,w} = Y{u,v} · Y{v,w} · Y{u,w}. Finally, you set Z to be the sum of the

(
n
3

)
random variables

Z{u,v,w}.

Show that Z is an unbiased estimate of the number of triangles in the graph, that is, E[Z] is
the number of triangles.

2. (Randomized Routing on the Hypercube) Recall the Randomized Routing Algorithm and its
analysis from class. As part of the analysis, we stated a lemma that we did not have time to prove.
In this problem, you will prove this lemma.

(a) Consider each route in Phase 1 of the algorithm as a directed path from the source x to the
designation z. Prove that once two routes separate, they do not rejoin.

(b) Does part (a) imply that, for any two packets i and j, there is at most one node such that i
and j are waiting in queue at that node at the same time step?

(c) Consider any packet i. Let pi = (v1, . . . , vk) be its path in phase 1. Let S be the set of packets
(other than i) whose routes pass through at least one edge of pi. Recall that the delay of a
packet is the number of time steps it waits in queues (in Phase 1). Show that the delay of
packet i is at most |S|.
Hint: Use part (a).

Guidelines: For each unit of delay that packet i encounters, we would like to “charge” one of
the packets in S. We define the lag of a packet i′ on the edge (vj , vj+1) as t− j, where t is the
time step when i′ traverses the edge (vj , vj+1). We say that a packet i′ leaves pi with lag ℓ if
the lag of packet i′ on the last edge of pi it traverses is ℓ.

i. Argue that if the delay of the packet i increases from ℓ to ℓ + 1 (for any integer ℓ), then
there exists a packet i′ from S that leaves pi with lag ℓ. (You can charge i′ for this unit
of delay.)

ii. Argue that you are charging each packet in S for at most one unit of delay and conclude
that the delay of packet i is at most |S|.

3. (Permutation Routing with Bit-Fixing in Random Order) Recall the permutation routing
problem on the n-dimensional hypercube we considered in class. Suppose n is even and recall that
N = 2n is the number of nodes in the hypercube. In the transpose permutation, we want to route
each packet with source x1 . . . xn to destination xn/2+1 . . . xnx1 . . . xn/2.

Before we studied the Randomized Routing Algorithm, Anatoly and Adrish1 proposed to modify
the bit-fixing algorithm, so that each packet chooses a random order of bits (independently from
other packets) and then fixes bits in that order (instead of fixing them in the order from 1 to n).
Show that this algorithm takes 2Ω(n) steps on the transpose permutation with high probability,
following the guidelines in each part.

(a) Consider packets that have exactly k bits x1, . . . , xn/2 set to 1 and xn/2+1 = · · · = xn = 0,
where k will be chosen later. What is the expected number of packets like that going through
the node 0n (i.e., with the all-zero label)?

1Your name could appear on the next homework! David asked how to achieve this. You can propose an interesting
modification to an algorithm in class either during lecture or on Piazza.
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(b) Use (nk )
k ≤

(
n
k

)
≤ ( enk )k to give a lower bound on the expectation you computed and select a

setting of k for which this bound is 2Ω(n). (You may ignore rounding issues, i.e., not worry
about the fact that k has to be an integer.)

(c) Let B be your bound from the previous part. Use Chernoff-Hoeffding bounds to show that
with high probability at least B/2 packets go through node 0n.

(d) Complete the proof of the required lower bound on the number of steps. (Be careful: each edge
can move one packet per time step, and so far we only argued about packets moving through
a specific node.).
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