Algorithm Design and Analysis

LECTURE 3 Data Structures Graphs

- Traversals
- Strongly connected components

Sofya Raskhodnikova

Measuring Running Time

- Focus on scalability: parameterize the running time by some measure of "size"
 - (e.g. n = number of men and women)
- Kinds of analysis
 - Worst-case
 - Average-case (requires knowing the distribution)
 - Best-case (how meaningful?)
- Exact times depend on computer; instead measure asymptotic growth

Computational Model

Unless explicitly stated otherwise

- All numbers and pointers fit into a single word (block) of memory
- Constant-time operations
 - Operations on words: arithmetic op's, shifts, comparisons, etc
 - Following a pointer <
 - Array lookup

Ignore cache, virtual memory, pretend everything fits in RAM

- We will sometimes drop these assumptions
- E.g.: for numerical problems, we might count bit operations

Data structures

Data Structures vs Abstract Data Types

- Data structure: concrete representation of data
 - Array
 - Linked list implemented with pointers
 - Binary heap in array
 - Adjacency list representation
- Abstract Data Type (ADT) : set of operations and their semantics (meaning/behavior)
 - Priority queue
 - Stack, queue
 - Graph
 - Dictionary

Basic Data Structures

- Lists
 - -O(1) time: Insert/delete anywhere we have a pointer
- Array
 - O(1) time: append, lookup

Good for

- Stack ADT: Last in, First out (LIFO)
 - -O(1) time: Push, pop
- Queue ADT: First in, First out (FIFO)
 - -O(1) time: enqueue, dequeue

Dictionary ADT

- Dictionary: Set of (key,value) pairs.
- Operations on dictionary S
 - S.Insert(key, value)
 - S.Find(key)
 - S.delete(key)

(Definitions of how to handle repeated keys vary.)

Dictionary Data Structures

Data Struct.	Find	Insert	Delete (after Find)
Unsorted array	$\Theta(n)$	Θ(1)	Θ(1)
Linked list	$\Theta(n)$	Θ(1)	Θ(1)
Sorted array	$\Theta(\log(n))$	Θ(n)	$\Theta(n)$
Binary search tree	$\Theta(height)$	$\Theta(height)$	$\Theta(height)$
Balanced binary search tree	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$
Hash table (expected time over the choice of hash function; worst case over data)	1	1	1

Here n = # of items currently in dictionary. Table entries are worst-case asymptotic running times.

Priority Queue ADT

- Set of (key, value) pairs
 - Values are unique, keys are not
- Operations
 - Q.Insert(k,v)
 - Q.Changekey(v, k_{new})
 - Q.Extract-min()
- Often implemented as a binary heap – KT Chapter 2.4

Exercise

- How can you simulate an array with two unbounded stacks and a small amount of memory?
 - (Hint: think of a tape machine with two reels)

- What if you only have one stack and constant memory? Can you still simulate arbitrary access to an array?
 - (Hint: think about pushdown automata.)

Graphs

Graphs (KT Chapter 3)

Definition. A *directed graph* (*digraph*) G = (V, E) is an ordered pair consisting of

- a set *V* of *vertices* (synonym: *nodes*),
- a set $E \subseteq V \times V$ of *edges*
- An edge e = (u, v) goes "from u to v" (may or may not allow u = v)
- In an *undirected graph* G = (V, E), the edge set *E* consists of *unordered* pairs of vertices

- Sometimes write $e = \{u, v\}$

• How many edges can a graph have?

- In either case, $|E| = O(|V/^2)$.

Graphs are everywhere

The Structure of Romantic and Sexual Relations at "Jefferson High School"

Graphs are everywhere

Example	Nodes	Edges
Transportation network: airline routes	airports	nonstop flights
Communication networks	computers, hubs, routers	physical wires
Information network: web	pages	hyperlinks
Information network: scientific papers	articles	references
Social networks	people	"u is v's friend", "u sends email to v", "u's MySpace page links to v"

Paths and Connectivity

- **Path** = sequence of consecutive edges in E
 - $-(u,w_1), (w_1,w_2), (w_2,w_3), \dots, (w_{k-1}, v)$
 - Write $u \leftrightarrow v$ or $u \sim v$
 - (Note: in a directed graph, direction matters)
- Undirected graph *G* is **connected** if for every two vertices *u*,*v*, there is a path from *u* to *v* in *G*

Trees

• **Def.** An undirected graph is a tree if it is connected and does not contain a cycle.

- **Theorem**. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.
 - G is connected.
 - G does not contain a cycle.
 - G has n-1 edges.

Rooted Trees

• Rooted tree: Given a tree T, choose a root node *r* and orient each edge away from *r*.

• Models hierarchical structure.

Phylogeny Trees

• Phylogeny trees. Describe evolutionary history of species.

Parse Trees

• Internal representation used by compiler, e.g.:

Paths and Connectivity

- Directed graph?
 - Strongly connected if for every pair, $u \sim v$ and $v \sim u$

Exploring a graph

Classic problem: Given vertices $s, t \in V$, is there a path from *s* to *t*?

Idea: explore all vertices reachable from *s*

Two basic techniques:

• Breadth-first search (BFS) -

How to convert these descriptions to precise algorithms?

- Explore children in order of **distance** to start node
- Depth-first search (DFS) ✓
 - Recursively explore vertex's children before exploring siblings

Breadth First Search

- BFS intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.
- BFS algorithm. $-L_0 = \{s\}.$
 - $-L_1 =$ all neighbors of L_0 .
 - $-L_2 =$ all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
 - $-L_{i+1}$ = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Breadth First Search

Breadth First Search

- Distance(*u*, *v*): number of edges on shortest path from *u* to *v*
- Properties. Let T be a BFS tree of G = (V, E).
 - Nodes in layer *i* have distance *i* from root *s*
 - Let (x, y) be an edge of G. Then the levels of x and y differ by at most 1.

BFS example (directed)

Implementing Traversals

Generic traversal algorithm

- **1.** $R = \{s\}$
- 2. While there is an edge (u, v) where $u \in R$ and $v \notin R$,
 - Add v to R

To implement this, need to choose...

- Graph representation
- Data structures to track...
 - Vertices already explored
 - Edge to be followed next

These choices affect the order of traversal

Adjacency-matrix representation

The *adjacency matrix* of a graph G = (V, E), where $V = \{1, 2, ..., n\}$, is the matrix A[1 ... n, 1 ... n] given by

$$A[i,j] = \begin{cases} 1 & \text{if } (i,j) \in E, \\ 0 & \text{if } (i,j) \notin E. \end{cases}$$

Storage: $\Theta(V^2)$ Good for dense graphs.

```
Lookup: O(1) time
List all neighbors: O(|V|)
```

Adjacency list representation

• An *adjacency list* of a vertex $v \in V$ is the list Adj[v] of vertices adjacent to v.

Typical notation: $Adj[1] = \{2, 3\}$ $Adj[2] = \{3\}$ $Adj[3] = \{\}$ $Adj[4] = \{3\}$ $Storage: \Theta(V+E)$ Good for sparse graphs.

For undirected graphs, |Adj[v]| = degree(v). For digraphs, |Adj[v]| = out-degree(v).

How many entries in lists? 2|E|Total $\Theta(V + E)$ storage. List all neighbors:
O(degree) time
Lookup(u,v):
O(min(degree(u),degree(v))) time

Other representations?

- Can we get
 - O(1) lookup /insertion/deletion
 - O(degree(v)) list all neighbors of v
 - -O(V+E) storage?

• (Hint: hash tables)

BFS with adjacency lists

- d[1..n]: array of integers
 - initialized to infinity
 - use to track distance from root (infinity = vertex not yet explored)
- Queue Q
 - initialized to empty
- Tree T
 - initialized to empty

BFS pseudocode

BFS(s):

- 1. Set d[s]=0
- **2.**Add s to Q
- 3. While (Q not empty)
 - a) Dequeue (u)
 - b) For each edge (u,v) adjacent to u
 - a) If $d[v] == \infty$ then
 - a) Set d[v] = d[u] + 1
 - b) Add edge (u,v) to tree T
 - c) Enqueue v onto Q

Total: O(m+n) time (linear in input size)

O(1) time, run once overall.

O(1) time, run once per vertex

Notes

- If s is the root of BFS tree,
- For every vertex u,
 - path in BFS tree from s to u is a shortest path in G
 - depth in BFS tree = distance from u to s
- Proof of BFS correctness: see KT, Chapter 3.

BFS Review

- Recall: Digraph G is strongly connected if for every pair of vertices, *s ∨ t* and *t ∨ s*
- Question: Give an algorithm for determining if a graph is strongly connected. What is the running time?