
8/31/2016

Sofya Raskhodnikova

Algorithm Design and Analysis

LECTURE 3

Data Structures

Graphs

• Traversals

• Strongly connected

components

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L3.1

Measuring Running Time

• Focus on scalability: parameterize the running

time by some measure of “size”

– (e.g. n = number of men and women)

• Kinds of analysis

– Worst-case

– Average-case (requires knowing the distribution)

– Best-case (how meaningful?)

• Exact times depend on computer; instead

measure asymptotic growth

8/31/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.2

Computational Model

Unless explicitly stated otherwise

• All numbers and pointers fit into a single word (block)

of memory

• Constant-time operations

– Operations on words: arithmetic op’s, shifts, comparisons, etc

– Following a pointer

– Array lookup

We will sometimes drop these assumptions

• E.g.: for numerical problems, we might count bit

operations

8/31/2016

Ignore cache, virtual memory,

pretend everything fits in RAM

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.3

Data structures

8/31/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L1.4

Data Structures vs Abstract Data Types

• Data structure: concrete representation of data

– Array

– Linked list implemented with pointers

– Binary heap in array

– Adjacency list representation

• Abstract Data Type (ADT) : set of operations
and their semantics (meaning/behavior)

– Priority queue

– Stack, queue

– Graph

– Dictionary

8/31/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.5

Basic Data Structures

• Lists

– O(1) time: Insert/delete anywhere we have a pointer

• Array

– O(1) time: append, lookup

Good for

• Stack ADT: Last in, First out (LIFO)

– O(1) time: Push, pop

• Queue ADT: First in, First out (FIFO)

– O(1) time: enqueue, dequeue

8/31/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.6

Dictionary ADT

• Dictionary: Set of (key,value) pairs.

• Operations on dictionary S

– S.Insert(key, value)

– S.Find(key)

– S.delete(key)

(Definitions of how to handle repeated keys vary.)

8/31/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.7

Dictionary Data Structures

Data Struct. Find Insert Delete (after Find)

Unsorted array ϴ(n) ϴ(1) ϴ(1)

Linked list ϴ(n) ϴ(1) ϴ(1)

Sorted array ϴ(log(n)) ϴ(n) ϴ(n)

Binary search tree ϴ(height) ϴ(height) ϴ(height)

Balanced binary search tree ϴ(log(n)) ϴ(log(n)) ϴ(log(n))

Hash table

(expected time over the

choice of hash function;

worst case over data)

1 1 1

8/31/2016

Here n = # of items currently in dictionary.

Table entries are worst-case asymptotic running times.

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.8

Priority Queue ADT

• Set of (key, value) pairs

– Values are unique, keys are not

• Operations

– Q.Insert(k,v)

– Q.Changekey(𝑣, 𝑘𝑛𝑒𝑤)

– Q.Extract-min()

• Often implemented as a binary heap

– KT Chapter 2.4

8/31/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.9

Exercise

• How can you simulate an array with two

unbounded stacks and a small amount of

memory?

– (Hint: think of a tape machine with two reels)

• What if you only have one stack and constant

memory? Can you still simulate arbitrary access

to an array?

– (Hint: think about pushdown automata.)

8/31/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.10

Graphs

8/31/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L3.11

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Graphs (KT Chapter 3)

Definition. A directed graph (digraph)
G = (V, E) is an ordered pair consisting of

• a set V of vertices (synonym: nodes),

• a set E  V  V of edges

• An edge e=(u,v) goes “from u to v” (may or may not allow u=v)

• In an undirected graph G = (V, E), the edge set E
consists of unordered pairs of vertices

– Sometimes write e={u,v}

• How many edges can a graph have?

– In either case, |E| = O(|V| 2).

8/31/2016
L3.12

Graphs are everywhere

L3.13

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Graphs are everywhere

Example Nodes Edges

Transportation network:

airline routes

airports nonstop flights

Communication networks computers, hubs, routers physical wires

Information network: web pages hyperlinks

Information network:

scientific papers

articles references

Social networks people “u is v’s friend”,

“u sends email to v”,

“u’s MySpace page links

to v”

8/31/2016
L3.14

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Paths and Connectivity

• Path = sequence of consecutive edges in E

– (u,w1), (w1,w2), (w2,w3), …, (wk-1, v)

– Write u↭v or u↝v

– (Note: in a directed graph, direction matters)

• Undirected graph G is connected if for every two

vertices u,v, there is a path from u to v in G

8/31/2016
L3.15

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Trees

• Def. An undirected graph is a tree if it is

connected and does not contain a cycle.

• Theorem. Let G be an undirected graph on n

nodes. Any two of the following statements

imply the third.

– G is connected.

– G does not contain a cycle.

– G has n-1 edges.

8/31/2016
L3.18

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Rooted Trees

• Rooted tree: Given a tree T, choose a root node r

and orient each edge away from r.

• Models hierarchical structure.

a tree the same tree, rooted at 1

v

parent of v

child of v

root r

8/31/2016
L3.19

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Phylogeny Trees

• Phylogeny trees. Describe evolutionary history

of species.

8/31/2016
L3.20

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Parse Trees

• Internal representation used by compiler, e.g.:
if (A[x]==2) then

(322 + (a*64 +12)/8)

else

fibonacci(n)

8/31/2016

if-then-else

==

array ref 2

A x

power

32 2

+

/

+

12*

a 64

8

fn-call

fibonacci n

L3.21

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Paths and Connectivity

• Directed graph?

– Strongly connected if for every pair, u↝v and v↝u

8/31/2016

22-4 Lecture Notes for Chapter 22: Elementary Graph Algorithms

Example

directed graph [undirected example in book] .

a

b

s

e

c

i

g

h

f
0

1

3

2

1

2

3

3

3

Can show that Q consists of vertices with d values.

i i i : : : i i C 1 i C 1 : : : i C 1

Only 1 or 2 values.

If 2, differ by 1 and all smallest are first.

Since each vertex gets a finite d value at most once, values assigned to vertices are

monotonically increasing over time.

Actual proof of correctness is a bit trickier. See book.

BFS may not reach all vertices.

Time D O.V C E / .

O.V / because every vertex enqueued at most once.

O.E / because every vertex dequeued at most once and we examine .u; / only

when u is dequeued. Therefore, every edge examined at most once if directed,

at most twice if undirected.

Depth-first search

Input: G D .V; E / , directed or undirected. No source vertex given!

Output: 2 timestamps on each vertex:

:d D discovery time

:f D finishing time

These will be useful for other algorithms later on.

Can also compute : . [See book.]

Will methodically explore every edge.

Start over from different vertices as necessary.

As soon as we discover a vertex, explore from it.

Unlike BFS, which puts a vertex on a queue so that we explore from it later.

L3.22

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Exploring a graph

Classic problem: Given vertices s,t ∈ V, is there a

path from s to t?

Idea: explore all vertices reachable from s

Two basic techniques:

• Breadth-first search (BFS)
• Explore children in order of distance to start node

• Depth-first search (DFS)
• Recursively explore vertex’s children before exploring

siblings

8/31/2016

How to convert these

descriptions to precise

algorithms?

L3.23

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Breadth First Search

• BFS intuition. Explore outward from s in all

possible directions, adding nodes one "layer" at a

time.

• BFS algorithm.

– L0 = { s }.

– L1 = all neighbors of L0.

– L2 = all nodes that do not belong to L0 or L1, and that

have an edge to a node in L1.

– Li+1 = all nodes that do not belong to an earlier layer,

and that have an edge to a node in Li.

s L1 L2 L n-1

8/31/2016
L3.24

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Breadth First Search

L0

L1

L2

L3

8/31/2016
L3.25

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Breadth First Search

• Distance(𝑢, 𝑣): number of edges on shortest path from 𝑢 to 𝑣

• Properties. Let T be a BFS tree of G = (V, E).

– Nodes in layer i have distance i from root s

– Let (𝑥, 𝑦) be an edge of G. Then the levels of 𝑥 and 𝑦 differ by

at most 1.

8/31/2016
L3.26

L0

L1

L2

L3

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

BFS example (directed)

8/31/2016

22-4 Lecture Notes for Chapter 22: Elementary Graph Algorithms

Example

directed graph [undirected example in book] .

a

b

s

e

c

i

g

h

f
0

1

3

2

1

2

3

3

3

Can show that Q consists of vertices with d values.

i i i : : : i i C 1 i C 1 : : : i C 1

Only 1 or 2 values.

If 2, differ by 1 and all smallest are first.

Since each vertex gets a finite d value at most once, values assigned to vertices are

monotonically increasing over time.

Actual proof of correctness is a bit trickier. See book.

BFS may not reach all vertices.

Time D O.V C E / .

O.V / because every vertex enqueued at most once.

O.E / because every vertex dequeued at most once and we examine .u; / only

when u is dequeued. Therefore, every edge examined at most once if directed,

at most twice if undirected.

Depth-first search

Input: G D .V; E / , directed or undirected. No source vertex given!

Output: 2 timestamps on each vertex:

:d D discovery time

:f D finishing time

These will be useful for other algorithms later on.

Can also compute : . [See book.]

Will methodically explore every edge.

Start over from different vertices as necessary.

As soon as we discover a vertex, explore from it.

Unlike BFS, which puts a vertex on a queue so that we explore from it later.

L3.31

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Implementing Traversals

Generic traversal algorithm

1. R = {s}

2. While there is an edge (u,v) where u ∈ R and v ∉ R,

– Add v to R

To implement this, need to choose…

• Graph representation

• Data structures to track…

– Vertices already explored

– Edge to be followed next

8/31/2016

These choices affect the

order of traversal

L3.32

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Adjacency-matrix representation

The adjacency matrix of a graph G = (V, E), where V = {1, 2, …,
n}, is the matrix A[1 . . n, 1 . . n] given by

A[i, j] =
1 if (i, j) ∈ E,

0 if (i, j)  E.

2 1

3 4

A 1 2 3 4

1

2

3

4

0 1 1 0

0 0 1 0

0 0 0 0

0 0 1 0

Storage: ϴ(V 2)
Good for dense graphs.

• Lookup: O(1) time
• List all neighbors: O(|V|)

8/31/2016
L3.33

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Adjacency list representation

• An adjacency list of a vertex v ∈ V is the list

Adj[v] of vertices adjacent to v.

8/31/2016

2 1

3 4

Adj[1] = {2, 3}

Adj[2] = {3}

Adj[3] = {}

Adj[4] = {3}

For undirected graphs, | Adj[v] | = degree(v).
For digraphs, | Adj[v] | = out-degree(v).

How many entries in lists? 2|E|
Total ϴ(V + E) storage.

Typical notation:

n = |V| = # vertices

m = |E| = # edges

Storage: ϴ(V+E)
Good for sparse graphs.

• List all neighbors:
O(degree) time
•Lookup(u,v):
O(min(degree(u),degree(v))
time

L3.34

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Other representations?

8/31/2016

• Can we get

– 𝑂(1) lookup /insertion/deletion

– 𝑂(𝑑𝑒𝑔𝑟𝑒𝑒(𝑣)) list all neighbors of 𝑣

– 𝑂(𝑉 + 𝐸) storage?

• (Hint: hash tables)

L3.35

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

BFS with adjacency lists

• d[1 .. n]: array of integers

– initialized to infinity

– use to track distance from root

(infinity = vertex not yet explored)

• Queue Q

– initialized to empty

• Tree T

– initialized to empty

8/31/2016
L3.36

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

BFS pseudocode

BFS(s):

1. Set d[s]=0

2. Add s to Q

3. While (Q not empty)

a) Dequeue (u)

b) For each edge (u,v) adjacent to u

a) If d[v] == ∞ then

a) Set d[v] =d[u]+1

b) Add edge (u,v) to tree T

c) Enqueue v onto Q

8/31/2016

O(1) time, run once overall.

O(1) time, run once per vertex

O(1) time per execution,

run at most twice per edge

Total: O(m+n) time

(linear in input size)

L3.37

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Notes

• If s is the root of BFS tree,

• For every vertex u,

– path in BFS tree from s to u is a shortest path in G

– depth in BFS tree = distance from u to s

• Proof of BFS correctness: see KT, Chapter 3.

8/31/2016
L3.38

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

BFS Review

• Recall: Digraph G is strongly connected if for

every pair of vertices, s↝ t and t↝ s

• Question: Give an algorithm for determining if a

graph is strongly connected. What is the running

time?

8/31/2016
L3.39

