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LECTURE 3

Data Structures

Graphs

• Traversals

• Strongly connected 

components
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Measuring Running Time

• Focus on scalability: parameterize the running 

time by some measure of “size” 

– (e.g. n = number of men and women)

• Kinds of analysis

– Worst-case

– Average-case (requires knowing the distribution)

– Best-case (how meaningful?)

• Exact times depend on computer; instead 

measure asymptotic growth
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Computational Model

Unless explicitly stated otherwise

• All numbers and pointers fit into a single word (block) 

of memory

• Constant-time operations

– Operations on words: arithmetic op’s, shifts, comparisons, etc

– Following a pointer

– Array lookup

We will sometimes drop these assumptions 

• E.g.: for numerical problems, we might count bit 

operations
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Ignore cache, virtual memory, 

pretend everything fits in RAM
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Data structures
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Data Structures vs Abstract Data Types

• Data structure: concrete representation of data

– Array

– Linked list implemented with pointers

– Binary heap in array

– Adjacency list representation

• Abstract Data Type (ADT) : set of operations
and their semantics (meaning/behavior)

– Priority queue

– Stack, queue

– Graph

– Dictionary
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Basic Data Structures

• Lists

– O(1) time: Insert/delete anywhere we have a pointer

• Array

– O(1) time: append, lookup

Good for

• Stack ADT: Last in, First out (LIFO)

– O(1) time: Push, pop

• Queue ADT: First in, First out (FIFO)

– O(1) time: enqueue, dequeue
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Dictionary ADT

• Dictionary: Set of (key,value) pairs.

• Operations on dictionary S

– S.Insert(key, value)

– S.Find(key)

– S.delete(key)

(Definitions of how to handle repeated keys vary.)
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Dictionary Data Structures

Data Struct. Find Insert Delete (after Find)

Unsorted array ϴ(n) ϴ(1) ϴ(1)

Linked list ϴ(n) ϴ(1) ϴ(1)

Sorted array ϴ(log(n)) ϴ(n) ϴ(n)

Binary search tree ϴ(height) ϴ(height) ϴ(height)

Balanced binary search tree ϴ(log(n)) ϴ(log(n)) ϴ(log(n))

Hash table 

(expected time over the 

choice of hash function; 

worst case over data)

1 1 1
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Here n = # of items currently in dictionary.

Table entries are worst-case asymptotic running times. 
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Priority Queue ADT

• Set of (key, value) pairs

– Values are unique, keys are not

• Operations

– Q.Insert(k,v)

– Q.Changekey(𝑣, 𝑘𝑛𝑒𝑤)

– Q.Extract-min()

• Often implemented as a binary heap

– KT Chapter 2.4
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Exercise

• How can you simulate an array with two 

unbounded stacks and a small amount of 

memory? 

– (Hint: think of a tape machine with two reels) 

• What if you only have one stack and constant 

memory? Can you still simulate arbitrary access 

to an array?

– (Hint: think about pushdown automata.)
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Graphs
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Graphs (KT Chapter 3)

Definition. A directed graph (digraph)
G = (V, E) is an ordered pair consisting of

• a set V of vertices (synonym: nodes), 

• a set E  V  V of edges

• An edge e=(u,v) goes “from u to v” (may or may not allow u=v)

• In an undirected graph G = (V, E), the edge set E 
consists of unordered pairs of vertices

– Sometimes write e={u,v}

• How many edges can a graph have?

– In either case, |E| = O(|V| 2).  

8/31/2016
L3.12



Graphs are everywhere
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Graphs are everywhere

Example Nodes Edges

Transportation network: 

airline routes

airports nonstop flights

Communication networks computers, hubs, routers physical wires

Information network: web pages hyperlinks

Information network: 

scientific papers

articles references

Social networks people “u is v’s friend”,

“u sends email to v”,

“u’s MySpace page links 

to v”
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Paths and Connectivity

• Path = sequence of consecutive edges in E

– (u,w1), (w1,w2), (w2,w3), …, (wk-1, v)

– Write  u↭v or u↝v

– (Note: in a directed graph, direction matters)

• Undirected graph G is connected if for every two 

vertices u,v, there is a path from u to v in G

8/31/2016
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Trees

• Def. An undirected graph is a tree if it is 

connected and does not contain a cycle.

• Theorem.  Let G be an undirected graph on n

nodes. Any two of the following statements 

imply the third.

– G is connected.

– G does not contain a cycle.

– G has n-1 edges.

8/31/2016
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Rooted Trees

• Rooted tree: Given a tree T, choose a root node r

and orient each edge away from r.

• Models hierarchical structure.

a tree the same tree, rooted at 1

v

parent of v

child of v

root r

8/31/2016
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Phylogeny Trees

• Phylogeny trees.  Describe evolutionary history 

of species. 

8/31/2016
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Parse Trees

• Internal representation used by compiler, e.g.: 
if (A[x]==2) then 

(322 + (a*64 +12)/8) 

else 

fibonacci(n)

8/31/2016

if-then-else

==

array ref 2

A x

power

32 2

+

/

+

12*

a 64

8

fn-call

fibonacci n
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Paths and Connectivity

• Directed graph?

– Strongly connected if for every pair, u↝v and v↝u

8/31/2016

22-4 Lecture Notes for Chapter 22: Elementary Graph Algorithms

Example

directed graph [undirected example in book] .

a

b

s

e

c

i

g

h

f
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2

1

2

3

3

3

Can show that Q consists of vertices with d values.

i i i : : : i i C 1 i C 1 : : : i C 1

Only 1 or 2 values.

If 2, differ by 1 and all smallest are first.

Since each vertex gets a finite d value at most once, values assigned to vertices are

monotonically increasing over time.

Actual proof of correctness is a bit trickier. See book.

BFS may not reach all vertices.

Time D O.V C E / .

O.V / because every vertex enqueued at most once.

O.E / because every vertex dequeued at most once and we examine .u; / only

when u is dequeued. Therefore, every edge examined at most once if directed,

at most twice if undirected.

Depth-first search

Input: G D .V; E / , directed or undirected. No source vertex given!

Output: 2 timestamps on each vertex:

:d D discovery time

:f D finishing time

These will be useful for other algorithms later on.

Can also compute : . [See book.]

Will methodically explore every edge.

Start over from different vertices as necessary.

As soon as we discover a vertex, explore from it.

Unlike BFS, which puts a vertex on a queue so that we explore from it later.
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Exploring a graph

Classic problem: Given vertices s,t ∈ V, is there a 

path from s to t?

Idea: explore all vertices reachable from s

Two basic techniques:

• Breadth-first search (BFS)
• Explore children in order of distance to start node

• Depth-first search (DFS)
• Recursively explore vertex’s children before exploring 

siblings

8/31/2016

How to convert these 

descriptions to precise 

algorithms?
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Breadth First Search

• BFS intuition.  Explore outward from s in all 

possible directions, adding nodes one "layer" at a 

time.

• BFS algorithm.

– L0 = { s }.

– L1 = all neighbors of L0.

– L2 = all nodes that do not belong to L0 or L1, and that 

have an edge to a node in L1.

– Li+1 = all nodes that do not belong to an earlier layer, 

and that have an edge to a node in Li.

s L1 L2 L n-1

8/31/2016
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Breadth First Search

L0

L1

L2

L3

8/31/2016
L3.25



S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Breadth First Search

• Distance(𝑢, 𝑣): number of edges on shortest path from 𝑢 to 𝑣

• Properties.  Let T be a BFS tree of G = (V, E). 

– Nodes in layer i have distance i from root s

– Let (𝑥, 𝑦) be an edge of G. Then the levels of 𝑥 and 𝑦 differ by 

at most 1.

8/31/2016
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BFS example (directed)
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22-4 Lecture Notes for Chapter 22: Elementary Graph Algorithms

Example

directed graph [undirected example in book] .

a

b

s

e

c
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Can show that Q consists of vertices with d values.

i i i : : : i i C 1 i C 1 : : : i C 1

Only 1 or 2 values.

If 2, differ by 1 and all smallest are first.

Since each vertex gets a finite d value at most once, values assigned to vertices are

monotonically increasing over time.

Actual proof of correctness is a bit trickier. See book.

BFS may not reach all vertices.

Time D O.V C E / .

O.V / because every vertex enqueued at most once.

O.E / because every vertex dequeued at most once and we examine .u; / only

when u is dequeued. Therefore, every edge examined at most once if directed,

at most twice if undirected.

Depth-first search

Input: G D .V; E / , directed or undirected. No source vertex given!

Output: 2 timestamps on each vertex:

:d D discovery time

:f D finishing time

These will be useful for other algorithms later on.

Can also compute : . [See book.]

Will methodically explore every edge.

Start over from different vertices as necessary.

As soon as we discover a vertex, explore from it.

Unlike BFS, which puts a vertex on a queue so that we explore from it later.
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Implementing Traversals

Generic traversal algorithm

1. R = {s}

2. While there is an edge (u,v) where u ∈ R and v ∉ R,

– Add v to R

To implement this, need to choose…

• Graph representation

• Data structures to track…

– Vertices already explored

– Edge to be followed next

8/31/2016

These choices affect the 

order of traversal
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Adjacency-matrix representation

The adjacency matrix of a graph G = (V, E), where V = {1, 2, …, 
n}, is the matrix A[1 . . n, 1 . . n] given by

A[i, j] =
1 if (i, j) ∈ E,

0 if (i, j)  E.

2 1

3 4

A 1 2 3 4

1

2

3

4

0 1 1 0

0 0 1 0

0 0 0 0

0 0 1 0

Storage: ϴ(V 2) 
Good for dense graphs.

• Lookup: O(1) time
• List all neighbors: O(|V|)

8/31/2016
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Adjacency list representation

• An adjacency list of a vertex v ∈ V is the list 

Adj[v] of vertices adjacent to v.

8/31/2016

2 1

3 4

Adj[1] = {2, 3}

Adj[2] = {3}

Adj[3] = {}

Adj[4] = {3}

For undirected graphs, | Adj[v] | = degree(v).
For digraphs, | Adj[v] | = out-degree(v).

How many entries in lists? 2|E|
Total ϴ(V + E) storage.

Typical notation:

n = |V| = # vertices

m = |E| = # edges

Storage: ϴ(V+E) 
Good for sparse graphs.

• List all neighbors: 
O(degree) time
•Lookup(u,v): 
O(min(degree(u),degree(v))
time 
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Other representations?
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• Can we get 

– 𝑂(1) lookup /insertion/deletion

– 𝑂(𝑑𝑒𝑔𝑟𝑒𝑒(𝑣)) list all neighbors of 𝑣

– 𝑂(𝑉 + 𝐸) storage?

• (Hint: hash tables)
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BFS with adjacency lists

• d[1 .. n]: array of integers

– initialized to infinity

– use to track distance from root 

(infinity = vertex not yet explored)

• Queue Q

– initialized to empty

• Tree T 

– initialized to empty

8/31/2016
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BFS pseudocode

BFS(s):

1. Set d[s]=0

2. Add s to Q

3. While (Q not empty)

a) Dequeue (u)

b) For each edge (u,v) adjacent to u

a) If d[v] == ∞ then

a) Set d[v] =d[u]+1

b) Add edge (u,v) to tree T

c) Enqueue v onto Q

8/31/2016

O(1) time, run once overall.

O(1) time, run once per vertex

O(1) time per execution, 

run at most twice per edge

Total: O(m+n) time 

(linear in input size)
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Notes

• If s is the root of BFS tree,

• For every vertex u, 

– path in BFS tree from s to u is a shortest path in G

– depth in BFS tree = distance from u to s

• Proof of BFS correctness: see KT, Chapter 3.
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BFS Review

• Recall: Digraph G is strongly connected if for 

every pair of vertices, s↝ t and t↝ s

• Question: Give an algorithm for determining if a 

graph is strongly connected. What is the running 

time?
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