Algorithm Design and Analysis

| ECTURE 5

w‘}‘ Graphs

 Applications of DFS

@ﬁb - Topological sort

e Strongly connected
components

Sofya Raskhodnikova

////////
L5.1

Review

 |f we run DFS on an undirected graph, can there
be an edge (u,v)
— where v Is an ancestor of u? (“back edge”)
— where v Is a sibling of u? (“cross edge”)

» Same guestions with a directed graph?

« Same questions with a BFS tree

— directed?
— undirected?

[7/
9/7/2016 L5.3

Application 1 of DFS:
Topological Sort

////////
L5.4

Directed Acyclic Graphs

Def. A topological order of a directed graph G = (V, E) is an ordering
of its nodes as vy, v,, ..., v, so that for every edge (v, vJ-) we have i < j.

a DAG a topological ordering

9/7/2016
L5.5

Precedence Constraints

Def. An DAG is a directed graph that contains no directed cycles.

Typical "meaning”: Precedence constraints. Edge (v;, v;) means task v,
must occur before v;.
Applications.
. Course prerequisite graph: course v; must be taken before v;.
. Compilation: module v; must be compiled before v;. Pipeline of
computing jobs: output of job v; needed to determine input of job v;.
. Getting dressed

9/7/2016
L5.6

Recall from book

» Every DAG has a topological order

 If G graph has a topological order, then G is a
DAG.

//////// L5.7

Review

 Suppose your run DFS on a DAG G=(V,E)

 True or false?
— Sorting by discovery time gives a topological order
— Sorting by finish time gives a topological order

Proof of correctness:

Lemma: If Gisa DAG and (u,v) Is an edge,
thenu.f > v.f.

Proof on board.

9/7/2016 L5 12

Generalizations

» Which of the following Is always true in an
arbitrary graph?
—Ifu~vandv ~uthenu. f >v.f
—Ifu ~vand not(v~u)thenu.f >v.f
—Ifu.f >v.fthenu v

« Key Lemma: In any graph G, if u - v but
u Is not reachable from v,
then u.f > v.t.

e Proof: Same as for DAGS.

9/7/2016 1513

Application 2 of DFS:
Strongly Connected
Components

////////
L5.14

Strongly Connected Components

 Undirected graphs:
— u,v are connected Iif there is a path between them.

* Directed graphs:

— u,v are strongly connected if there are paths
u~~vandv v u

» SCC(u): set of vertices strongly connected to u

* Observation:Two SCC's either disjoint or equal.
¢) T~

TN)

O V) 15.15

How do we find all SCC’s?

e First idea:
— Pick a vertex u

— Run DFS (or BFS) from u to find all vertices
reachable from u

— How do we find vertices that can reach u?
* Look at reverse graph GV

« Same vertices: V
« All edges are reversed: (u, v) becomes (v, u)

« Run DFS or BFS in G™V to find all vertices that
can reach u

9/7/2016 L1516

Overall algorithm

» Maintain function Comp:V—{0,...,n}
— An array, or a field for each vertex
— Initialize to O for all v

c1=1 - N
- For each vertex v Time O(n(m + n))
— if v.scc=0 In the worst case
+ BFS(G,v) N Wy

« BFS(G™,v)

 For all vertices reachable from v in both G and G™V
— V.SCC=I

ei=i+1

9/7/2016
L5.17

Fast SCC

Algorithm SCC._(G)
— Call DFS(G) to get finishing times u.f for all u
— Compute GV

— Call DFS(G™Y), with one modification:
* in main loop, consider vertices in decreasing order of u.f

— Output vertices of each tree in DFS forest as separate
SCC

Could we use BFS...
* Running time? « For the first pass (on G)?

e For the second pass (on G"¢")?
e Correctness? pass ()

9/7/2016 1518

« Numbers: discover/finish times of first DFS
* Red arrows: Forest of DFS(G™V)
* Red ovals: roots of second DFS forest

9/7/2016 L5.19

Proof of Correctness

» Fix graph G on n vertices

 For each SCC C in G, define
- f(C) = latest finish time (from first DFS) in C

* Order the SCC’s C,, C,, ... in decreasing order of f(C)
Theorem: The algorithm outputs each of the C; correctly.
 Proof by induction on i

e [= 1:Second DFS will start at a vertex x in C,
— There are no edges in G"¢” leaving C, (by key lemma)
— So DFS-Visit(x) will visit exactly the vertices of C,

e Fori > 1:

— Suppose C,, C,, ... C;_;are correctly output. Then
e ith DFS call starts from within C..
o All vertices of C; will be reached.
- Edges in G"*” only leave C; towards C; with j < i.

— S0 C; Is output correctly. QED.

L5.20

Exercise

» Consider the SCC graph Gg of G:
— vertices are SCC’s of G

— edge (C,C’) means G has an edge (u,v) withu in C
and v in C’

* Prove that G¢. Is a DAG.

9/7/2016 1521

Exercise

Consider the following modification to the
algorithm for SCC:

 Use G instead of G"¢" in 2" DFS, but scan
vertices In order of increasing finish times from

the 1st DFS.

Is this algorithm correct?

9/7/2016 L5 22

