
9/7/2016

Sofya Raskhodnikova

Algorithm Design and Analysis

LECTURE 5

Graphs

• Applications of DFS

• Topological sort

• Strongly connected

components

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L5.1

Review

• If we run DFS on an undirected graph, can there

be an edge (u,v)

– where v is an ancestor of u? (“back edge”)

– where v is a sibling of u? (“cross edge”)

• Same questions with a directed graph?

• Same questions with a BFS tree

– directed?

– undirected?

9/7/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L5.3

Application 1 of DFS:

Topological Sort

9/7/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L5.4

9/7/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L5.5

Directed Acyclic Graphs

Def. A topological order of a directed graph G = (V, E) is an ordering

of its nodes as v1, v2, …, vn so that for every edge (vi, vj) we have i < j.

a DAG a topological ordering

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

9/7/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L5.6

Precedence Constraints

Def. An DAG is a directed graph that contains no directed cycles.

Typical “meaning”: Precedence constraints. Edge (vi, vj) means task vi

must occur before vj.

Applications.

 Course prerequisite graph: course vi must be taken before vj.

 Compilation: module vi must be compiled before vj. Pipeline of

computing jobs: output of job vi needed to determine input of job vj.

 Getting dressed

underwear
pants

jacket

shirt

boots

socks

mittens

Recall from book

• Every DAG has a topological order

• If G graph has a topological order, then G is a

DAG.

9/7/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L5.7

Review

• Suppose your run DFS on a DAG G=(V,E)

• True or false?

– Sorting by discovery time gives a topological order

– Sorting by finish time gives a topological order

Proof of correctness:

Lemma: If G is a DAG and (u,v) is an edge,

then u.f > v.f .

Proof on board.

9/7/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L5.12

Generalizations

• Which of the following is always true in an

arbitrary graph?

– If u ↝ v and v ↝ u then 𝑢. 𝑓 > 𝑣. 𝑓

– If u ↝ v and not(v ↝ u) then 𝑢. 𝑓 > 𝑣. 𝑓

– If 𝑢. 𝑓 > 𝑣. 𝑓 then u ↝ v

• Key Lemma: In any graph G, if u ⇝ v but

u is not reachable from v,

then u.f > v.f.

• Proof: Same as for DAGs.
9/7/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L5.13

Application 2 of DFS:

Strongly Connected

Components

9/7/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L5.14

Strongly Connected Components

• Undirected graphs:

– u,v are connected if there is a path between them.

• Directed graphs:

– u,v are strongly connected if there are paths

u ↝ v and v ↝ u

• SCC(u): set of vertices strongly connected to u

• Observation:Two SCC’s either disjoint or equal.

Lecture Notes for Chapter 22: Elementary Graph Algorithms 22-9

Is ! gray, too?

No, because then ! would be ancestor of u.

) .u; ! / is a back edge.

) contradiction of previous lemma (dag has no back edges).

Is ! white?

Then becomes descendant of u.

By parenthesis theorem, u:d < ! :d < ! :f < u: f .

Is ! black?

Then ! is already finished.

Since we’re exploring .u; ! / , we have not yet finished u.

Therefore, ! : f < u: f .

Strongly connected components

Given directed graph G D .V; E / .

A strongly connected component (SCC) of G is a maximal set of vertices C ! V

such that for all u; ! 2 C , both u ❀ ! and ! ❀ u.

Example

[Just show SCC’s at first. Do DFS a little later.]

14/19 15/16

17/18 13/20

3/4

2/5

1/12

10/11

6/9

7/8

Algorithm uses GT D transpose of G.

GT D .V; E T/ , E T D f .u; ! / W.! ; u/ 2 Eg.

GT is G with all edges reversed.

Can create GT in ‚ .V C E / time if using adjacency lists.

Observation

G and GT have the same SCC’s. (u and ! are reachable from each other in G if

and only if reachable from each other in GT.)

Component graph

GSCC D .V SCC; E SCC/ .

V SCC has one vertex for each SCC in G.

E SCC has an edge if there’s an edge between the corresponding SCC’s in G.

L5.15

How do we find all SCC’s?

• First idea:

– Pick a vertex u

– Run DFS (or BFS) from u to find all vertices

reachable from u

– How do we find vertices that can reach u?

• Look at reverse graph Grev

• Same vertices: V

• All edges are reversed: (𝑢, 𝑣) becomes (𝑣, 𝑢)

• Run DFS or BFS in Grev to find all vertices that

can reach u

9/7/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L5.16

Overall algorithm

• Maintain function Comp:V→{0,…,n}

– An array, or a field for each vertex

– Initialize to 0 for all v

• 𝑖 = 1

• For each vertex v

– if v.scc=0

• BFS(G,v)

• BFS(Grev,v)

• For all vertices reachable from v in both G and Grev

– v.scc=i

• 𝑖 = 𝑖 + 1
9/7/2016

Time 𝑂 𝑛 𝑚 + 𝑛

in the worst case

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L5.17

Fast SCC

Algorithm SCCfast(G)

– Call DFS(G) to get finishing times u.f for all u

– Compute Grev

– Call DFS(Grev), with one modification:

• in main loop, consider vertices in decreasing order of u.f

– Output vertices of each tree in DFS forest as separate

SCC

• Running time?

• Correctness?
9/7/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L5.18

Could we use BFS…

• For the first pass (on G)?

• For the second pass (on 𝐺𝑟𝑒𝑣)?

Example

• Numbers: discover/finish times of first DFS

• Red arrows: Forest of DFS(Grev)

• Red ovals: roots of second DFS forest

9/7/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L5.19

Proof of Correctness
• Fix graph G on n vertices

• For each SCC 𝐶 in G, define
– 𝑓(𝐶) = latest finish time (from first DFS) in 𝐶

• Order the SCC’s C1, C2, … in decreasing order of 𝑓(𝐶)
Theorem: The algorithm outputs each of the 𝐶𝑖 correctly.

• Proof by induction on 𝑖
• 𝑖 = 1: Second DFS will start at a vertex x in C1

– There are no edges in 𝑮𝒓𝒆𝒗 leaving C1 (by key lemma)

– So DFS-Visit(x) will visit exactly the vertices of C1

• For 𝑖 > 1:
– Suppose 𝐶1, 𝐶2, … 𝐶𝑖−1are correctly output. Then

• 𝑖th DFS call starts from within 𝐶𝑖.
• All vertices of 𝐶𝑖 will be reached.

• Edges in 𝑮𝒓𝒆𝒗 only leave 𝑪𝒊 towards 𝑪𝒋 with 𝒋 < 𝒊.

– So 𝐶𝑖 is output correctly. QED.
L5.20

Exercise

• Consider the SCC graph GSCC of G:

– vertices are SCC’s of G

– edge (C,C’) means G has an edge (u,v) with u in C

and v in C’

• Prove that GSCC is a DAG.

9/7/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L5.21

Exercise

Consider the following modification to the

algorithm for SCC:

• Use G instead of 𝐺𝑟𝑒𝑣 in 2nd DFS, but scan

vertices in order of increasing finish times from

the 1st DFS.

Is this algorithm correct?

9/7/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L5.22

