
Sofya Raskhodnikova

Algorithm Design and Analysis

LECTURE 8
Greedy Algorithms

• Minimum Spanning Tree

• Clustering

• Huffman Codes

9/19/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.1

Minimum Spanning Tree

9/19/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.2

9/19/2016

Cut and Cycle Properties

•Cut property. Let S be a subset of nodes. Let e be the

min weight edge with exactly one endpoint in S. Then the

MST contains e.

•Cycle property. Let C be a cycle, and let f be the max

weight edge in C. Then the MST does not contain f.

𝑆

e is in the MST

e

f
𝐶

f is not in the MST

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.3

9/19/2016

Review Questions

Let G be a connected undirected graph with distinct
edge weights. Answer true or false:

• Let e be the cheapest edge in G. The MST of G
contains e.

• Let e be the most expensive edge in G. The MST
of G does not contains e.

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.6

9/19/2016

Review Questions

Let G be a connected undirected graph with distinct
edge weights. Answer true or false:

• Let e be the cheapest edge in G. The MST of G
contains e.

(Answer: True, by the Cut Property)

• Let e be the most expensive edge in G. The MST
of G does not contains e.

(Answer: False. Counterexample: if G

is a tree, all its edges are in the MST.)

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.7

Greedy Algorithms for MST

• Kruskal's: Start with 𝑇 = ∅. Consider edges in
ascending order of weights. Insert edge e in T unless
doing so would create a cycle.

• Reverse-Delete: Start with 𝑇 = 𝐸. Consider edges
in descending order of weights. Delete edge e from
T unless doing so would disconnect 𝑇.

• Prim's: Start with some root node s. Grow a tree T
from s outward. At each step, add to 𝑇 the cheapest
edge e with exactly one endpoint in S.

• Borůvka’s: Start with 𝑇 = ∅. At each round, add
the cheapest edge leaving each connected
component of T.

9/19/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.8

9/19/2016

Prim's Algorithm: Correctness

•Prim's algorithm. [Jarník 1930, Prim 1959]

– Apply cut property to S.

– When edge weights are

distinct, every edge that is

added must be in the MST

– Thus, Prim’s algorithm

outputs the MST

S

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.9

9/19/2016

Correctness of Kruskal

• [Kruskal, 1956]: Consider edges

in ascending order of weight.

– Case 1: If adding e to T creates a

cycle, discard e according to cycle

property.

– Case 2: Otherwise, insert e = (u, v)

into T according to cut property where

S = set of nodes in u's connected

component.

Case 1

e

v

u

Case 2

e
S

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.10

Non-distinct edges?

9/19/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.12

Lexicographic Tiebreaking

• To remove the assumption that all edge costs are distinct:

perturb all edge costs by tiny amounts to break any ties.

• Impact. Kruskal and Prim only interact with costs via pairwise

comparisons. If perturbations are sufficiently small, MST with

perturbed costs is MST with original costs.

• Implementation. Can handle arbitrarily small perturbations

implicitly by breaking ties lexicographically, according to index.

boolean less(i, j) {

if (cost(ei) < cost(ej)) return true

else if (cost(ei) > cost(ej)) return false

else if (i < j) return true

else return false

}

e.g., if all edge costs are integers,

perturbing cost of edge ei by i / n2

9/19/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.13

Implementing MST algorithms

• Prim: similar to Dijkstra

• Kruskal:

– Requires efficient data structure to keep track of

“islands”: Union-Find data structure

– KT Chapter 4.6

9/19/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.14

9/19/2016

Implementation of Prim(G,w)

IDEA: Maintain V – S as a priority queue Q (as in Dijkstra).
Key each vertex in Q with the weight of the least-
weight edge connecting it to a vertex in S.
Q V

key[v] for all v V

key[s] 0 for some arbitrary s V

while Q

do u EXTRACT-MIN(Q)

for each v Adjacency-list[u]

do if v Q and w(u, v) < key[v]

then key[v] w(u, v) ⊳ DECREASE-KEY

p[v] u

At the end, {(v, p[v])} forms the MST.

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.15

9/19/2016

Q(m) implicit DECREASE-KEY’s.

Q V

key[v] for all v V

key[s] 0 for some arbitrary s V

while Q

do u EXTRACT-MIN(Q)

for each v Adj[u]

do if v Q and w(u, v) < key[v]

then key[v] w(u, v)

p[v] u

Analysis of Prim

degree(u)
times

n
times

Q(n)
total

Time: as in Dijkstra
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.16

9/19/2016

Implementation of Kruskal

•Use the Union-Find data structure.

– Build set T of edges in the MST.

– Maintain a set for each connected component.

Kruskal(G, w) {

Sort edges weights so that w1 w2 ... wm.

T

foreach (u V) make a set containing singleton u

foreach edge (u,v)

//go through edges in sorted order

if (u and v are in different sets) {

T T {ei}

merge the sets containing u and v

}

return T

}

merge two components

are u and v in different
connected components?

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.17

Union-Find Data Structures

Operation\

Implementation

Array + linked-lists

and sizes

Balanced Trees Trees with Path

Compression

Find (worst-case) ϴ(1) Θ(log 𝑛) Θ(log 𝑛)

Union of sets A,B

(worst-case)

ϴ(min(|A|,|B|) (could

be as large as ϴ(n)

Θ(log 𝑛) Θ(log 𝑛)

Amortized analysis:

𝑛 unions and 𝑛 finds,

starting from singletons

Θ(𝑛 log 𝑛) Θ(𝑛 log 𝑛) Θ(𝑛 𝛼 𝑛)

9/19/2016

•Here 𝛼(𝑛) is the inverse Ackerman function, which grows much more slowly
than log n.

•See KT Chapter 4.6

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.18

9/19/2016

The Union-Find Data Structure

Operations:

• MAKE-UNION-FIND(𝑆): creates the data structure;
puts all elements in 𝑆 into separate sets.

𝑶(𝒏) time where 𝒏 = |𝑺|

• FIND(𝑢): returns the representative of the set
containing 𝑢.

𝑶(log 𝒏) time

• UNION(A,B): merge sets A,B into a single set.

𝑶(𝟏) time

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.19

9/19/2016

Forest Representation

• Each element is a node.

• Each tree represents one set (store its size).

• The root is the representative.

• MAKE-UNION-FIND: create roots

– O(1) time per element

• UNION(A,B): point the root of the

smaller tree to the root of the larger tree

– O(1) time

c

h e

b

d

g

f

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.24

9/19/2016

FIND operation

c

h e

b

d

x

f

• FIND(x): follow the links to the root.

Theorem. FIND takes O(log n) time.

Proof: Time to evaluate FIND(x)

= number of predecessors of x

= number of times x changes representatives.

• Every time x changes representatives, the size of its set

at least doubles. It can happen ≤ log2 n times. ▪

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.25

9/19/2016

An Improvement to FIND

c

h e

b

d

x

f

• Path Compression: update every pointer on the way to

the root.

• Theorem. n FIND operations take O(n (n)) time,

where (n) is inverse Ackerman function.

c

h e

b

d

x

f
FIND(x)

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.26

9/19/2016

Implementation of Kruskal

•Build set T of edges in the MST.

•Maintain a set for each connected component.

•Sorting: O(m log m) = O(m log (n2)) = O(m log n)

•Union-Find operations: O(m log n)

Kruskal(G, w) {

Sort edges weights so that w1 w2 ... wm.

T

MAKE-UNION-FIND(V)

foreach edge (u,v)

//go through edges in sorted order

if (FIND(u) FIND(v)) {

T T {ei}

UNION(FIND(u), FIND(v))

}

return T

}

merge two components

are u and v in different
connected components?

O(m log n) time

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.27

9/19/2016

MST Algorithms in 2016

•Deterministic comparison-based algorithms.

– O(m log n) [Jarník, Prim, Dijkstra, Kruskal, Boruvka]

– O(m (m, n)). [Chazelle 2000]

•Holy grail: O(m).

•Related.

– O(m) randomized. [Karger-Klein-Tarjan 1995]

– O(m) verification. [Dixon-Rauch-Tarjan 1992]

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.28

Max-Space Clustering

9/19/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.29

9/19/2016

Clustering

Given a set of 𝑛 items (e.g., photos,

documents, microorganizms) labeled

p1,…,pn, classify them into coherent groups.

Outbreak of cholera deaths in London in 1850s.
Reference: Nina Mishra, University of Virginia

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.30

𝒌-Clustering

• Given: a set of 𝑛 items

• Goal: partition items into 𝑘 sets such that

– “similar” items are together

– “different” items are separate

9/19/2016

Items Distance

Newspaper articles # words that appear in 1 but

not both articles

Students at university X Difference in course lists

Nodes in social network Difference in “friends lists”

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.31

Max-spacing Clustering

• Input: set V of 𝑛 items

and a distance function 𝑑: 𝑉 × 𝑉 → ℝ≥0

• Goal: Find 𝑘 disjoint nonempty sets

𝐶1, 𝐶2, . . 𝐶𝑘 ⊆ 𝑉 that maximize

Spacing 𝐶1, … , 𝐶𝑘 = min
𝑖≠𝑗

min
𝑢∈𝐶𝑖,𝑣∈𝐶𝑗

𝑑(𝑢, 𝑣)

9/19/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.33

9/19/2016

Example

6 12

5

14

3

8

10

15

9

7

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.34

Single Linkage Clustering

1. Start with n clusters, one per node

2. While there are more than 𝑘 clusters

– Find a closest pair of clusters 𝑖, 𝑗, where

𝑑𝑖𝑠𝑡 𝐶𝑖 , 𝐶𝑗 = min
𝑢∈𝐶𝑖,𝑣∈𝐶𝑗

𝑑 𝑢, 𝑣

– Merge 𝐶𝑖 with 𝐶𝑗

What MST algorithm is this?

What is the running time?

9/19/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.35

9/19/2016

Example with MST

6 12

5

14

3

8

10

15

9

7

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.36

Optimality of Single Linkage (SL)

Theorem. SL clustering has maximal spacing.

Proof: Pick any other clustering 𝐶1
′ , … , 𝐶𝑘′

• There exists a SL cluster 𝐶𝑖 that is “split” by the 𝐶𝑗′s

– ∃ 𝑥, 𝑦 ∈ 𝐶𝑖 such that 𝑥 ∈ 𝐶𝑗 , 𝑦 ∈ 𝐶ℓ and 𝑗 ≠ ℓ.

• Look at the path P in MST from 𝑥 to 𝑦.

– All edges on P have weight less than 𝑆𝑝𝑎𝑐𝑖𝑛𝑔 𝐶1, … , 𝐶𝑘
since algorithm proceeds in ascending order of weight

– Some edge 𝑒 in P crosses from 𝐶𝑗′ to 𝐶ℓ′

• So 𝑆𝑝𝑎𝑐𝑖𝑛𝑔 𝐶1
′ , … , 𝐶𝑘

′ ≤ 𝑆𝑝𝑎𝑐𝑖𝑛𝑔(𝐶1, … , 𝐶𝑘). QED

9/19/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.37

Huffman codes

9/19/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.41

Prefix-free codes

• Binary code maps characters in an alphabet (say
{A,…,Z}) to binary strings

• Prefix-free code: no codeword is a prefix of any
other

– ASCII: prefix-free (all symbols have the same length)

– Not prefix-free:

• a 0

• b 1

• c 00

• d 01

• …

• Why is prefix-free good?

9/19/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.42

A prefix-free code for a few letters

A tree for "this is an example of a huffman tree“

• e.g. e 00, p 10011

9/19/2016

Source: WIkipedia
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.43

How good is a prefix-free code?

• Given a text, let f[i] = # occurrences of letter i

• Total number of symbols needed

• How do we pick the best prefix-free code?

9/19/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.44

Huffman’s Algorithm (1952)

• Given individual letter frequencies f[1, .., n]:

– Find the two least frequent letters i,j

– Merge them into symbol with frequency f[i]+f[j]

– Repeat

• e.g.

– a: 6

– b: 6

– c: 4

– d: 3

– e: 2
9/19/2016

Theorem: Huffman

algorithm finds an

optimal prefix-free code

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.45

Warming up

• Lemma 0: Every optimal prefix-free code

corresponds to a full binary tree.

– (Full = every node has 0 or 2 children)

• Lemma 1: Let x and y be two least frequent

characters. There is an optimal code in which x

and y are siblings.

– Prove using an exchange argument.

9/19/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.46

Huffman codes are optimal

Proof by induction

• Base case: two symbols; only one full tree.

• Induction step:

– Suppose f[1], f[2] are smallest in f[1,…,n]

– T is an optimal code for {1,…,n}

– Lemma 1 ==> can choose T where 1,2 are siblings.

– New symbol numbered n+1, with f[n+1] = f[1]+f[2]

– T’ = code obtained by merging 1,2 into n+1

9/19/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.47

Cost of T in terms of T’:

• Minimizing cost(T) is the same as minimizing

cost(T’).

• By induction hypothesis T’ is optimal.

• So, T is optimal, too. ▪

9/19/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.48

Notes

• See Jeff Erickson’s lecture notes on greedy

algorithms:

– http://theory.cs.uiuc.edu/~jeffe/teaching/algorithms/

– efficient implementation using min-heap

9/19/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.49

http://theory.cs.uiuc.edu/~jeffe/teaching/algorithms/

Data Compression for real?

• Generally, we don’t use letter-by-letter encoding

• Instead, find frequently repeated substrings

– Lempel-Ziv algorithm extremely common

– also has deep connections to entropy

9/19/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L8.50

