Algorithm Design and Analysis

| ECTURE 8

%‘}‘ Greedy Algorithms
* Minimum Spanning Tree

@ﬁb » Clustering

 Huffman Codes

Sofya Raskhodnikova

L8.1

Minimum Spanning Tree

L8.2

Cut and Cycle Properties

*Cut property. Let S be a subset of nodes. Let e be the
min weight edge with exactly one endpoint in S. Then the
MST contains e.

*Cycle property. Let C be a cycle, and let f be the max
weight edge in C. Then the MST does not contain f.

T4 <7

e isin the MST f is not in tThe MST

9/19/2016 L8.3

Review Questions

et G be a connected undirected graph with distinct
edge weights. Answer true or false:

* Let e be the cheapest edge In G. The MST of G
contains e.

 Let e be the most expensive edge in G. The MST
of G does not contains e.

9/19/2016 L8.6

Review Questions

et G be a connected undirected graph with distinct
edge weights. Answer true or false:

* Let e be the cheapest edge in G. The MST of G
contains e.

(Answer: True, by the Cut Property)

 Let e be the most expensive edge in G. The MST
of G does not contains e.

(Answer: False. Counterexample: If G
IS a tree, all its edges are in the MST.)

9/19/2016 L8.7

Greedy Algorithms for MST

« Kruskal's: Start with T = @. Consider edges In
ascending order of weights. Insert edge e in T unless
doing so would create a cycle.

» Reverse-Delete: Start with T = E. Consider edges
In descending order of weights. Delete edge e from
T unless doing so would disconnect T.

* Prim’'s: Start with some root node s. Grow atree T
from s outward. At each step, add to T the cheapest
edge e with exactly one endpoint in S.

» Boruvka’s: Start with T = @. At each round, add
the cheapest edge leaving each connected
component of T.

9/19/2016 L8.8

Prim's Algorithm: Correctness

*Prim's algorithm. [Jarnik 1930, Prim 1959]
—Apply cut property to S.
—When edge weights are

distinct, every edge that is
added must be in the MST

—Thus, Prim’s algorithm
outputs the MST

9/19/2016 L8.9

Correctness of Kruskal

« [Kruskal, 1956]:. Consider edges

In ascending order of weight.
— Case 1: Ifadding eto T creates a
cycle, discard e according to cycle

property.

Case 1

— Case 2: Otherwise, inserte = (u, v)
Into T according to cut property where
S = set of nodes in u's connected
component.

Case 2

9/19/2016 18.10

Non-distinct edges?

L8.12

_exicographic Tiebreaking

» To remove the assumption that all edge costs are distinct:
perturb all edge costs by tiny amounts to break any ties.

« Impact. Kruskal and Prim only interact with costs via pairwise
comparisons. If perturbations are sufficiently small, MST with
perturbed costs is MST with original costs.

e.g., if all edge costs are integers,
perturbing cost of edge e; by i / n?

« Implementation. Can handle arbitrarily small perturbations
Implicitly by breaking ties lexicographically, according to index.

boolean less (i, j) {
if (cost(e;) < cost(ej)) return true
else if (cost(e;) > cost(ej)) return false
else if (i < j) return true
else return false

9/19/2016 18.13

Implementing MST algorithms

* Prim: similar to Dijkstra

e Kruskal:

— Requires efficient data structure to keep track of
“islands”: Union-Find data structure

— KT Chapter 4.6

9/19/2016 L8.14

Implementation of Prim(G,w)

IDEA: Maintain \VV — S as a priority queue Q (as in Dijkstra).
Key each vertex in Q with the weight of the least-

weight edge connecting it to a vertex in S.
Q«V

key[v] <~ oo forallv e V

key[s] «— O for some arbitrary s € V
while Q =

do u < EXTRACT-MIN(Q)
for each v € Adjacency-list[u]
do if v e Q and w(u, v) < key|[V]
then key[v] < w(u,v) © DECREASE-KEY
n[v] <« u

At the end, {(v, [v])} forms the MST.

/19/
9/19/2016 L8.15

Analysis of Prim

(Q<«V

O)) key[v] « o forallv e V

total _ key[s] < O for some arbitrary s € V
4 while Q # &

do u «— EXTRACT-MIN(Q)
N for each v € Adj[u]
times degree(u) do if v e Q and w(u, v) < key[v]
times then key[v] < w(u, V)
N - TC[V] < Uu /

®(m) implicit DEcReasSE-KEY’s.
Time: as In Dijkstra

/19/
9/19/2016 18.16

Implementation of Kruskal

*Use the Union-Find data structure.
— Build set T of edges in the MST.
— Maintain a set for each connected component.

Kruskal (G, w) {
Sort edges weights so that w; < w, < ... < w,.
T < ¢
foreach (u € V) make a set containing singleton u

are u and v in different

v
SRR Gl (8,7 connected components?

//go through edges in sorted order -
if (u and v are in different sets) {
T« T U {e;}
merge the sets containing u and v

}

erge e
return T merge two components

9/19/2016

L8.17

Union-Find Data Structures

Operation\ Array + linked-lists Balanced Trees Trees with Path
Implementation and sizes Compression
Find (worst-case) O(1) O(logn) O(logn)
Union of sets A,B O(min(]A[,B|) (could O(log n) O®(log n)
(worst-case) be as large as ©(n)

Amortized analysis:

n unions and n finds, O(nlogn) O(nlogn) O(n a(n))
starting from singletons

*Here a(n) is the inverse Ackerman function, which grows much more slowly

than log n.
*See KT Chapter 4.6

9/19/2016

L8.18

The Union-Find Data Structure

Operations:

« MAKE-UNION-FIND(S): creates the data structure;
puts all elements in S into separate sets.
O(n) time where n = |S|

* FIND(u): returns the representative of the set
containing u.

O(logn) time

 UNION(A,B): merge sets A,B into a single set.
O(1) time

9/19/2016 L8.19

Forest Representation

« Each element is a node.
 Each tree represents one set (store its size).

» The root is the representative.

« MAKE-UNION-FIND: create roots
— O(1) time per element

 UNION(A,B): point the root of the ON

smaller tree to the root of the largertree ® @& ~\

— O(1) time
®

9/19/2016

FIND operation

* FIND(x): follow the links to the root.

Theorem. FIND takes O(log n) time. \@

Proof: Time to evaluate FIND(X) ® © \
= number of predecessors of X) I
= number of times x changes representatives. (x)

 Every time x changes representatives, the size of its set
at least doubles. It can happen < log, n times. -

9/19/2016 L.8.25

An Improvement to FIND

« Path Compression: update every pointer on the way to
the root.

Qe FINDG) . A
é ® @\ "

* Theorem. n FIND operations take O(n a(n)) time,
where o(Nn) Is Inverse Ackerman function.

9/19/2016 18.26

Implementation of Kruskal

*Build set T of edges in the MST.

*Maintain a set for each connected component.

Kruskal (G, w) {
Sort edges weights so that w; < w, < ...
T < ¢
MAKE-UNION-FIND (V)
foreach edge (u,v)
//go through edges in sorted order
if (FIND(u) # FIND(v)) {
T « T U {e;}
UNION (FIND (u), FIND (v))
} N

return T

IA
)

are uand v in different
connected components?

merge two components

}
*Sorting: O(m log m) = O(m log (n?)) = O(m log n)

*Union-Find operations: O(m log n) O(m log n) time

9/19/2016 L8.27

MST Algorithms in 2016

*Deterministic comparison-based algorithms.

—O(m log n) [Jarnik, Prim, Dijkstra, Kruskal, Boruvka]
—O(m o (M, n)). [Chazelle 2000]

*Holy grail: O(m).

*Related.
—O(m) randomized. [Karger-Klein-Tarjan 1995]
—O(m) verification. [Dixon-Rauch-Tarjan 1992]

9/19/2016 L8.28

Max-Space Clustering

L8.29

Clustering

Given a set of n items (e.g., photos,
documents, microorganizms) labeled

Ps.....P,, Cclassify them into coherent groups.

@
o
=%

AN

Outbreak of cholera deaths in London in 1850s.
Reference: Nina Mishra, University of Virginia

»

9/19/2016

L8.30

k-Clustering

« Glven: a set of n items
 Goal: partition items into k sets such that

— “similar” 1tems are together

— “different” 1tems are separate

Newspaper articles # words that appear in 1 but
not both articles

Students at university X Difference in course lists
Nodes in social network Difference in “friends lists”

9/19/2016

L8.31

Max-spacing Clustering

* Input: set V of n items
and a distance function d: V x V - R=0

» Goal: Find k disjoint nonempty sets
C1,C5,..C, €V that maximize

Spacing(Cy, ..., Cy) = rlniljn uercril,gécjd(u’ V)

®) @ o
@
®)
Q Z
- ® @ OQ

9/19/2016 L8.33

O

Example

Single Linkage Clustering

1. Start with n clusters, one per node

2. While there are more than k clusters

— Find a closest pair of clusters i, j, where
dist(Ci, Cj) = min d(u,v)

U€eCl;,vecl;j

— Merge C; with C;

What MST algorithm is this?
What Is the running time?

9/19/2016 L.8.35

Example with MST

Optimality of Single Linkage (SL)

Theorem. SL clustering has maximal spacing.

Proof: Pick any other clustering Cj, ..., Ci’
» There exists a SL cluster C; that is “split” by the C;'s
—3x,y € C;suchthatx € C;,y € Cp,and j # 2.

» Look at the path P in MST from x to y.

— All edges on P have weight less than Spacing(Cy, ..., Cy)
since algorithm proceeds in ascending order of weight

— Some edge e in P crosses from C;' to C,’
« So Spacing(Cy, ..., C},) < Spacing(Cy, ..., Cy). QED

9/19/2016 L8.37

Huffman codes

L8.41

Prefix-free codes

 Binary code maps characters in an alphabet (say
{A,...,Z}}) to binary strings

» Prefix-free code: no codeword is a prefix of any
other

— ASCII: prefix-free (all symbols have the same length)

— Not prefix-free:
ca—>0
cb->1
« c—> 00
«d—>01

* Why Is prefix-free good?

9/19/2016 1L.8.42

A prefix-free code for a few letters

36

16 20

el (@) [a]4 (4 4 4 5) ('7)

w2 @ [v2 @) [@ M2 2 @ (3

—

fot) (uTt)) (e ([(2
A tree for "this I1s an example of a huffman tree
* e.0.e > 00,p-> 10011

Source: Wikipedia
9/19/2016 L8.43

How good Is a prefix-free code?

» Glven a text, let f[1] = # occurrences of letter |
 Total number of symbols needed

Z fli] - depth(i)

* How do we pick the best prefix-free code?

L8.44

Huffman’s Algorithm (1952)

 Given individual letter frequencies f[1, .., n]:
— Find the two least frequent letters 1,
— Merge them into symbol with frequency f[i]+f[]]

— Repeat
* e.0.
—a. 6
_ b6 Theorem: Huffman
4 algorithm finds an
d.' ; optimal prefix-free code

— e 2

9/19/2016 18.45

Warming up

* Lemma 0: Every optimal prefix-free code
corresponds to a full binary tree.

— (Full = every node has 0 or 2 children)

 Lemma 1: Let x and y be two least frequent
characters. There is an optimal code in which x
and y are siblings.

— Prove using an exchange argument.

9/19/2016 L8.46

Huffman codes are optimal

Proof by induction
 Base case: two symbols; only one full tree.
* Induction step:

— Suppose 1[1], {f[2] are smallest in {]1,...,n]

— T is an optimal code for {1,...,n}
— Lemma 1 ==> can choose T where 1,2 are siblings.

— New symbol numbered n+1, with f[n+1] = f[1]+f[2]
— T” = code obtained by merging 1,2 into n+1

9/19/2016 L8.47

Costof T in terms of T’;

costi T) = Zf[:: - depth(i)
=1

m+1
_Z,r“[:: cdepth(i) 4+ F[1] depth{1) + F[2] - depth(2) = f [n + 1] - depth{n + 1)
=3

= cost{ T)+ f[1] - depth{1) + F[2] depth(2) = f [n + 1] - depth(n + 1)
=cost{ T 1+ (f[1)+ f[2]) depth(T) = f[n+ 1] - (depth{T) = 1)
= cost{ T)+ £ [1] + F [2]

* Minimizing cost(T) Is the same as minimizing
cost(T’).

* By induction hypothesis T’ 1s optimal.

* So, T Is optimal, too. -

9/19/2016 18.48

Notes

* See Jeff Erickson’s lecture notes on greedy
algorithms:

— http://theory.cs.uiuc.edu/~jeffe/teaching/algorithms/
— efficient implementation using min-heap

9/19/2016 1.8.49

http://theory.cs.uiuc.edu/~jeffe/teaching/algorithms/

Data Compression for real ?

» Generally, we don’t use letter-by-letter encoding

* Instead, find frequently repeated substrings
— Lempel-Ziv algorithm extremely common
— also has deep connections to entropy

9/19/2016 L8.50

